• Решить уравнение реакции по химии онлайн. Калькулятор сбалансирования окислительно-восстановительной реакции

    Уравнением реакции в химии называется запись химического процесса с помощью химических формул и математических знаков.

    Такая запись является схемой химической реакции. Когда возникает знак «=», то это называется «уравнение». Попробуем его решить .

    Вконтакте

    Пример разбора простых реакций

    В кальции один атом, так как коэффициент не стоит. Индекс здесь тоже не написан, значит, единица. С правой стороны уравнения Са тоже один. По кальцию нам не надо работать.

    Видео: Коэффициенты в уравнениях химических реакций.

    Смотрим следующий элемент - кислород. Индекс 2 говорит о том, что здесь 2 иона кислорода. С правой стороны нет индексов, то есть одна частица кислорода, а с левой — 2 частицы. Что мы делаем? Никаких дополнительных индексов или исправлений в химическую формулу вносить нельзя, так как она написана правильно.

    Коэффициенты — это то, что написано перед наименьшей частью. Они имеют право меняться. Для удобства саму формулу не переписываем. С правой части один умножаем на 2, чтобы получить и там 2 иона кислорода.

    После того как мы поставили коэффициент, получилось 2 атома кальция. С левой стороны только один. Значит, теперь перед кальцием мы должны поставить 2.

    Теперь проверяем итог. Если количество атомов элементов равно с обеих сторон, то можем поставить знак «равно».

    Другой наглядный пример: два водорода слева, и после стрелочки у нас тоже два водорода.

    • Два кислорода до стрелочки, а после стрелочки индексов нет, значит, один.
    • Слева больше, а справа меньше.
    • Ставим коэффициент 2 перед водой.

    Умножили всю формулу на 2, и теперь у нас изменилось количество водорода. Умножаем индекс на коэффициент, и получается 4. А с левой стороны осталось два атома водорода. И чтобы получить 4, мы должны водород умножить на два.

    Видео: Расстановка коэффициентов в химическом уравнении

    Вот тот случай, когда элемент в одной и в другой формуле с одной стороны, до стрелочки.

    Один ион серы слева, и один ион - справа. Две частицы кислорода, плюс еще две частицы кислорода. Значит, что с левой стороны 4 кислорода. Справа же находится 3 кислорода. То есть с одной стороны получается четное число атомов, а с другой — нечетное. Если же мы умножим нечетное в два раза, то получим четное число. Доводим сначала до четного значения. Для этого умножаем на два всю формулу после стрелочки. После умножения получаем шесть ионов кислорода, да еще и 2 атома серы. Слева же имеем одну микрочастицу серы. Теперь уравняем ее. Ставим слева уравнения перед серой 2.

    Уравняли .

    Сложные реакции

    Этот пример более сложный, так как здесь больше элементов вещества.

    Это называется реакцией нейтрализации. Что здесь нужно уравнивать в первую очередь:

    • С левой стороны один атом натрия.
    • С правой стороны индекс говорит о том, что здесь 2 натрия.

    Напрашивается вывод, что надо умножить всю формулу на два.

    Видео: Составление уравнений химических реакций

    Теперь смотрим, сколько серы. С левой и правой стороны по одной. Обращаем внимание на кислород. С левой стороны мы имеем 6 атомов кислорода. С другой стороны – 5 . Меньше справа, больше слева. Нечетное количество надо довести до четного значения. Для этого формулу воды умножаем на 2, то есть из одного атома кислорода делаем 2.

    Теперь с правой стороны уже 6 атомов кислорода. С левой стороны также 6 атомов. Проверяем водород. Два атома водорода и еще 2 атома водорода. То есть будет четыре атома водорода с левой стороны. И с другой стороны также четыре атома водорода. Все элементы уравнены. Ставим знак «равно».

    Видео: Химические уравнения. Как составлять химические уравнения.

    Следующий пример.

    Здесь пример интересен тем, что появились скобки. Они говорят о том, что если множитель стоит за скобкой, то каждый элемент, стоящий в скобках, умножается на него. Начать необходимо с азота, так как его меньше, чем кислорода и водорода. Слева азот один, а справа, с учетом скобок, его два.

    Справа два атома водорода, а нужно четыре. Мы выходим из положения, просто умножая воду на два, в результате чего получили четыре водорода. Отлично, водород уравняли. Остался кислород. До реакции присутствует 8 атомов, после — тоже 8.

    Отлично, все элементы уравнены, можем ставить «равно».

    Последний пример .

    На очереди у нас барий. Он уравнен, его трогать не нужно. До реакции присутствует два хлора, после нее — всего один. Что же нужно сделать? Поставить 2 перед хлором после реакции.

    Видео: Балансирование химических уравнений.

    Теперь за счет коэффициента, который только что поставлен, после реакции получилось два натрия, и до реакции тоже два. Отлично, все остальное уравнено.

    Также уравнивать реакции можно методом электронного баланса. Этот метод имеет ряд правил, по которым его можно осуществлять. Следующим действием мы должны расставить степени окисления всех элементов в каждом веществе для того, чтобы понять где произошло окисление, а где восстановление.

    Часть I

    1. Закон Ломоносова-Лавуазье – закон сохранения массы веществ:

    2. Уравнения химической реакции – это условная запись химической реакции с помощью химических формул и математических знаков.

    3. Химическое уравнение должно соответствовать закону сохранения массы веществ, что достигается расстановкой коэффициентов в уравнении реакции.

    4. Что показывает химическое уравнение?
    1) Какие вещества вступают в реакцию.
    2) Какие вещества образуются в результате.
    3) Количественные отношения веществ в реакции, т. е. количества реагирующих и образующихся веществ в реакции.
    4) Тип химической реакции.

    5. Правила расстановки коэффициентов в схеме химической реакции на примере взаимодействия гидроксида бария и фосфорной кислоты с образованием фосфата бария и воды.
    а) Запишите схему реакции, т. е. формулы реагирующих и образующихся веществ:

    б) начинайте уравнивать схему реакции с формулы соли (если она имеется). При этом помните, что несколько сложных ионов в составе основания или соли обозначаются скобками, а их число – индексами за скобками:

    в) водород уравняйте в предпоследнюю очередь:

    г) кислород уравняйте последним – это индикатор верной расстановки коэффициентов.
    Перед формулой простого вещества возможна запись дробного коэффициента, после чего уравнение необходимо переписать с удвоенными коэффициентами.

    Часть II

    1. Составьте уравнения реакций, схемы которых:

    2. Напишите уравнения химических реакций:

    3. Установите соответствие между схемой и суммой коэффициентов в химической реакции.

    4. Установите соответствие между исходными веществами и продуктами реакции.

    5. Что показывает уравнение следующей химической реакции:

    1) Вступили в реакцию гидроксид меди и соляная кислота;
    2) Образовались в результате реакции соль и вода;
    3) Коэффициенты перед исходными веществами 1 и 2.

    6. С помощью следующей схемы составьте уравнение химической реакции, используя удвоение дробного коэффициента:

    7. Уравнение химической реакции:
    4P+5O2=2P2O5
    показывает количество вещества исходных веществ и продуктов, их массу или объём:
    1) фосфора – 4 моль или 124 г;
    2) оксида фосфора (V) – 2 моль, 284 г;
    3) кислорода – 5 моль или 160 л.

    Методика решения задач по химии

    При решении задач необходимо руководствоваться несколькими простыми правилами:

    1. Внимательно прочитать условие задачи;
    2. Записать, что дано;
    3. Перевести, если это необходимо, единицы физических величин в единицы системы СИ (некоторые внесистемные единицы допускаются, например литры);
    4. Записать, если это необходимо, уравнение реакции и расставить коэффициенты;
    5. Решать задачу, используя понятие о количестве вещества, а не метод составления пропорций;
    6. Записать ответ.

    В целях успешной подготовки по химии следует внимательно рассмотреть решения задач, приводимых в тексте, а также самостоятельно решить достаточное число их. Именно в процессе решения задач будут закреплены основные теоретические положения курса химии. Решать задачи необходимо на протяжении всего времени изучения химии и подготовки к экзамену.

    Вы можете использовать задачи на этой странице, а можете скачать хороший сборник задач и упражнений с решением типовых и усложненных задач (М. И. Лебедева, И. А. Анкудимова): скачать .

    Моль, молярная масса

    Молярная масса – это отношение массы вещества к количеству вещества, т.е.

    М(х) = m(x)/ν(x), (1)

    где М(х) – молярная масса вещества Х, m(x) – масса вещества Х, ν(x) – количество вещества Х. Единица СИ молярной массы – кг/моль, однако обычно используется единица г/моль. Единица массы – г, кг. Единица СИ количества вещества – моль.

    Любая задача по химии решается через количество вещества. Необходимо помнить основную формулу:

    ν(x) = m(x)/ М(х) = V(x)/V m = N/N A , (2)

    где V(x) – объем вещества Х(л), V m – молярный объем газа (л/моль), N – число частиц, N A – постоянная Авогадро.

    1. Определите массу иодида натрия NaI количеством вещества 0,6 моль.

    Дано : ν(NaI)= 0,6 моль.

    Найти : m(NaI) =?

    Решение . Молярная масса иодида натрия составляет:

    M(NaI) = M(Na) + M(I) = 23 + 127 = 150 г/моль

    Определяем массу NaI:

    m(NaI) = ν(NaI) M(NaI) = 0,6 150 = 90 г.

    2. Определите количество вещества атомного бора, содержащегося в тетраборате натрия Na 2 B 4 O 7 массой 40,4 г.

    Дано : m(Na 2 B 4 O 7)=40,4 г.

    Найти : ν(B)=?

    Решение . Молярная масса тетрабората натрия составляет 202 г/моль. Определяем количество вещества Na 2 B 4 O 7:

    ν(Na 2 B 4 O 7)= m(Na 2 B 4 O 7)/ М(Na 2 B 4 O 7) = 40,4/202=0,2 моль.

    Вспомним, что 1 моль молекулы тетрабората натрия содержит 2 моль атомов натрия, 4 моль атомов бора и 7 моль атомов кислорода (см. формулу тетрабората натрия). Тогда количество вещества атомного бора равно: ν(B)= 4 ν (Na 2 B 4 O 7)=4 0,2 = 0,8 моль.

    Расчеты по химическим формулам. Массовая доля.

    Массовая доля вещества – отношение массы данного вещества в системе к массе всей системы, т.е. ω(Х) =m(Х)/m, где ω(X)– массовая доля вещества Х, m(X) – масса вещества Х, m – масса всей системы. Массовая доля – безразмерная величина. Её выражают в долях от единицы или в процентах. Например, массовая доля атомного кислорода составляет 0,42, или 42%, т.е. ω(О)=0,42. Массовая доля атомного хлора в хлориде натрия составляет 0,607, или 60,7%, т.е. ω(Cl)=0,607.

    3. Определите массовую долю кристаллизационной воды в дигидрате хлорида бария BaCl 2 2H 2 O.

    Решение : Молярная масса BaCl 2 2H 2 O составляет:

    М(BaCl 2 2H 2 O) = 137+ 2 35,5 + 2 18 =244 г/моль

    Из формулы BaCl 2 2H 2 O следует, что 1 моль дигидрата хлорида бария содержит 2 моль Н 2 О. Отсюда можно определить массу воды, содержащейся в BaCl 2 2H 2 O:

    m(H 2 O) = 2 18 = 36 г.

    Находим массовую долю кристаллизационной воды в дигидрате хлорида бария BaCl 2 2H 2 O.

    ω(H 2 O) = m(H 2 O)/ m(BaCl 2 2H 2 O) = 36/244 = 0,1475 = 14,75%.

    4. Из образца горной породы массой 25 г, содержащей минерал аргентит Ag 2 S, выделено серебро массой 5,4 г. Определите массовую долю аргентита в образце.

    Дано : m(Ag)=5,4 г; m = 25 г.

    Найти : ω(Ag 2 S) =?

    Решение : определяем количество вещества серебра, находящегося в аргентите: ν(Ag) =m(Ag)/M(Ag) = 5,4/108 = 0,05 моль.

    Из формулы Ag 2 S следует, что количество вещества аргентита в два раза меньше количества вещества серебра. Определяем количество вещества аргентита:

    ν(Ag 2 S)= 0,5 ν (Ag) = 0,5 0,05 = 0,025 моль

    Рассчитываем массу аргентита:

    m(Ag 2 S) = ν(Ag 2 S) М(Ag 2 S) = 0,025 248 = 6,2 г.

    Теперь определяем массовую долю аргентита в образце горной породы, массой 25 г.

    ω(Ag 2 S) = m(Ag 2 S)/ m = 6,2/25 = 0,248 = 24,8%.

    Вывод формул соединений

    5. Определите простейшую формулу соединения калия с марганцем и кислородом, если массовые доли элементов в этом веществе составляют соответственно 24,7, 34,8 и 40,5%.

    Дано : ω(K) =24,7%; ω(Mn) =34,8%; ω(O) =40,5%.

    Найти : формулу соединения.

    Решение : для расчетов выбираем массу соединения, равную 100 г, т.е. m=100 г. Массы калия, марганца и кислорода составят:

    m (К) = m ω(К); m (К) = 100 0,247= 24,7 г;

    m (Mn) = m ω(Mn); m (Mn) =100 0,348=34,8 г;

    m (O) = m ω(O); m (O) = 100 0,405 = 40,5 г.

    Определяем количества веществ атомных калия, марганца и кислорода:

    ν(К)= m(К)/ М(К) = 24,7/39= 0,63 моль

    ν(Mn)= m(Mn)/ М(Mn) = 34,8/ 55 = 0,63 моль

    ν(O)= m(O)/ М(O) = 40,5/16 = 2,5 моль

    Находим отношение количеств веществ:

    ν(К) : ν(Mn) : ν(O) = 0,63: 0,63: 2,5.

    Разделив правую часть равенства на меньшее число (0,63) получим:

    ν(К) : ν(Mn) : ν(O) = 1: 1: 4.

    Следовательно, простейшая формула соединения KMnO 4 .

    6. При сгорании 1,3 г вещества образовалось 4,4 г оксида углерода (IV) и 0,9 г воды. Найти молекулярную формулу вещества, если его плотность по водороду равна 39.

    Дано : m(в-ва) =1,3 г; m(СО 2)=4,4 г; m(Н 2 О)=0,9 г; Д Н2 =39.

    Найти : формулу вещества.

    Решение : Предположим, что искомое вещество содержит углерод, водород и кислород, т.к. при его сгорании образовались СО 2 и Н 2 О. Тогда необходимо найти количества веществ СО 2 и Н 2 О, чтобы определить количества веществ атомарных углерода, водорода и кислорода.

    ν(СО 2) = m(СО 2)/ М(СО 2) = 4,4/44 = 0,1 моль;

    ν(Н 2 О) = m(Н 2 О)/ М(Н 2 О) = 0,9/18 = 0,05 моль.

    Определяем количества веществ атомарных углерода и водорода:

    ν(С)= ν(СО 2); ν(С)=0,1 моль;

    ν(Н)= 2 ν(Н 2 О); ν(Н)= 2 0,05 = 0,1 моль.

    Следовательно, массы углерода и водорода будут равны:

    m(С) = ν(С) М(С) = 0,1 12 = 1,2 г;

    m(Н) = ν(Н) М(Н) = 0,1 1 =0,1 г.

    Определяем качественный состав вещества:

    m(в-ва) = m(С) + m(Н) = 1,2 + 0,1 = 1,3 г.

    Следовательно, вещество состоит только из углерода и водорода (см. условие задачи). Определим теперь его молекулярную массу, исходя из данной в условии задачи плотности вещества по водороду.

    М(в-ва) = 2 Д Н2 = 2 39 = 78 г/моль.

    ν(С) : ν(Н) = 0,1: 0,1

    Разделив правую часть равенства на число 0,1, получим:

    ν(С) : ν(Н) = 1: 1

    Примем число атомов углерода (или водорода) за «х», тогда, умножив «х» на атомные массы углерода и водорода и приравняв эту сумму молекулярной массе вещества, решим уравнение:

    12х + х = 78. Отсюда х= 6. Следовательно, формула вещества С 6 Н 6 – бензол.

    Молярный объем газов. Законы идеальных газов. Объемная доля .

    Молярный объем газа равен отношению объема газа к количеству вещества этого газа, т.е.

    V m = V(X)/ ν(x),

    где V m – молярный объем газа - постоянная величина для любого газа при данных условиях; V(X) – объем газа Х; ν(x) – количество вещества газа Х. Молярный объем газов при нормальных условиях (нормальном давлении р н = 101 325 Па ≈ 101,3 кПа и температуре Тн= 273,15 К ≈ 273 К) составляет V m = 22,4 л/моль.

    В расчетах, связанных с газами, часто приходится переходить от данных условий к нормальным или наоборот. При этом удобно пользоваться формулой, следующей из объединенного газового закона Бойля-Мариотта и Гей-Люссака:

    ──── = ─── (3)

    Где p – давление; V – объем; Т- температура в шкале Кельвина; индекс «н» указывает на нормальные условия.

    Состав газовых смесей часто выражают при помощи объемной доли – отношения объема данного компонента к общему объему системы, т.е.

    где φ(Х) – объемная доля компонента Х; V(X) – объем компонента Х; V - объем системы. Объемная доля – безразмерная величина, её выражают в долях от единицы или в процентах.

    7. Какой объем займет при температуре 20 о С и давлении 250 кПа аммиак массой 51 г?

    Дано : m(NH 3)=51 г; p=250 кПа; t=20 o C.

    Найти : V(NH 3) =?

    Решение : определяем количество вещества аммиака:

    ν(NH 3) = m(NH 3)/ М(NH 3) = 51/17 = 3 моль.

    Объем аммиака при нормальных условиях составляет:

    V(NH 3) = V m ν(NH 3) = 22,4 3 = 67,2 л.

    Используя формулу (3), приводим объем аммиака к данным условиям [температура Т= (273 +20)К = 293 К]:

    p н TV н (NH 3) 101,3 293 67,2

    V(NH 3) =──────── = ───────── = 29,2 л.

    8. Определите объем , который займет при нормальных условиях газовая смесь, содержащая водород, массой 1,4 г и азот, массой 5,6 г.

    Дано : m(N 2)=5,6 г; m(H 2)=1,4 ; н.у.

    Найти : V(смеси)=?

    Решение : находим количества вещества водорода и азота:

    ν(N 2) = m(N 2)/ М(N 2) = 5,6/28 = 0,2 моль

    ν(H 2) = m(H 2)/ М(H 2) = 1,4/ 2 = 0,7 моль

    Так как при нормальных условиях эти газы не взаимодействуют между собой, то объем газовой смеси будет равен сумме объемов газов, т.е.

    V(смеси)=V(N 2) + V(H 2)=V m ν(N 2) + V m ν(H 2) = 22,4 0,2 + 22,4 0,7 = 20,16 л.

    Расчеты по химическим уравнениям

    Расчеты по химическим уравнениям (стехиометрические расчеты) основаны на законе сохранения массы веществ. Однако в реальных химических процессах из-за неполного протекания реакции и различных потерь веществ масса образующихся продуктов часто бывает меньше той, которая должна образоваться в соответствии с законом сохранения массы веществ. Выход продукта реакции (или массовая доля выхода) – это выраженное в процентах отношение массы реально полученного продукта к его массе, которая должна образоваться в соответствии с теоретическим расчетом, т.е.

    η = /m(X) (4)

    Где η– выход продукта, %; m p (X) - масса продукта Х, полученного в реальном процессе; m(X) – рассчитанная масса вещества Х.

    В тех задачах, где выход продукта не указан, предполагается, что он – количественный (теоретический), т.е. η=100%.

    9. Какую массу фосфора надо сжечь для получения оксида фосфора (V) массой 7,1 г?

    Дано : m(P 2 O 5)=7,1 г.

    Найти : m(Р) =?

    Решение : записываем уравнение реакции горения фосфора и расставляем стехиометрические коэффициенты.

    4P+ 5O 2 = 2P 2 O 5

    Определяем количество вещества P 2 O 5 , получившегося в реакции.

    ν(P 2 O 5) = m(P 2 O 5)/ М(P 2 O 5) = 7,1/142 = 0,05 моль.

    Из уравнения реакции следует, что ν(P 2 O 5)= 2 ν(P), следовательно, количество вещества фосфора, необходимого в реакции равно:

    ν(P 2 O 5)= 2 ν(P) = 2 0,05= 0,1 моль.

    Отсюда находим массу фосфора:

    m(Р) = ν(Р) М(Р) = 0,1 31 = 3,1 г.

    10. В избытке соляной кислоты растворили магний массой 6 г и цинк массой 6,5 г. Какой объем водорода, измеренный при нормальных условиях, выделится при этом?

    Дано : m(Mg)=6 г; m(Zn)=6,5 г; н.у.

    Найти : V(H 2) =?

    Решение : записываем уравнения реакции взаимодействия магния и цинка с соляной кислотой и расставляем стехиометрические коэффициенты.

    Zn + 2 HCl = ZnCl 2 + H 2

    Mg + 2 HCl = MgCl 2 + H 2

    Определяем количества веществ магния и цинка, вступивших в реакцию с соляной кислотой.

    ν(Mg) = m(Mg)/ М(Mg) = 6/24 = 0,25 моль

    ν(Zn) = m(Zn)/ М(Zn) = 6,5/65 = 0,1 моль.

    Из уравнений реакции следует, что количество вещества металла и водорода равны, т.е. ν(Mg) = ν(Н 2); ν(Zn) = ν(Н 2), определяем количество водорода, получившегося в результате двух реакций:

    ν(Н 2) = ν(Mg) + ν(Zn) = 0,25 + 0,1= 0,35 моль.

    Рассчитываем объем водорода, выделившегося в результате реакции:

    V(H 2) = V m ν(H 2) = 22,4 0,35 = 7,84 л.

    11. При пропускании сероводорода объемом 2,8 л (нормальные условия) через избыток раствора сульфата меди (II) образовался осадок массой 11,4 г. Определите выход продукта реакции.

    Дано : V(H 2 S)=2,8 л; m(осадка)= 11,4 г; н.у.

    Найти : η =?

    Решение : записываем уравнение реакции взаимодействия сероводорода и сульфата меди (II).

    H 2 S + CuSO 4 = CuS ↓+ H 2 SO 4

    Определяем количество вещества сероводорода, участвующего в реакции.

    ν(H 2 S) = V(H 2 S) / V m = 2,8/22,4 = 0,125 моль.

    Из уравнения реакции следует, что ν(H 2 S) = ν(СuS) = 0,125 моль. Значит можно найти теоретическую массу СuS.

    m(СuS) = ν(СuS) М(СuS) = 0,125 96 = 12 г.

    Теперь определяем выход продукта, пользуясь формулой (4):

    η = /m(X)= 11,4 100/ 12 = 95%.

    12. Какая масса хлорида аммония образуется при взаимодействии хлороводорода массой 7,3 г с аммиаком массой 5,1 г? Какой газ останется в избытке? Определите массу избытка.

    Дано : m(HCl)=7,3 г; m(NH 3)=5,1 г.

    Найти : m(NH 4 Cl) =? m(избытка) =?

    Решение : записываем уравнение реакции.

    HCl + NH 3 = NH 4 Cl

    Эта задача на «избыток» и «недостаток». Рассчитываем количества вещества хлороводорода и аммиака и определяем, какой газ находится в избытке.

    ν(HCl) = m(HCl)/ М(HCl) = 7,3/36,5 = 0,2 моль;

    ν(NH 3) = m(NH 3)/ М(NH 3) = 5,1/ 17 = 0,3 моль.

    Аммиак находится в избытке, поэтому расчет ведем по недостатку, т.е. по хлороводороду. Из уравнения реакции следует, что ν(HCl) = ν(NH 4 Cl) = 0,2 моль. Определяем массу хлорида аммония.

    m(NH 4 Cl) = ν(NH 4 Cl) М(NH 4 Cl) = 0,2 53,5 = 10,7 г.

    Мы определили, что аммиак находится в избытке (по количеству вещества избыток составляет 0,1 моль). Рассчитаем массу избытка аммиака.

    m(NH 3) = ν(NH 3) М(NH 3) = 0,1 17 = 1,7 г.

    13. Технический карбид кальция массой 20 г обработали избытком воды, получив ацетилен, при пропускании которого через избыток бромной воды образовался 1,1,2,2 –тетрабромэтан массой 86,5 г. Определите массовую долю СаС 2 в техническом карбиде.

    Дано : m = 20 г; m(C 2 H 2 Br 4)=86,5 г.

    Найти : ω(СаC 2) =?

    Решение : записываем уравнения взаимодействия карбида кальция с водой и ацетилена с бромной водой и расставляем стехиометрические коэффициенты.

    CaC 2 +2 H 2 O = Ca(OH) 2 + C 2 H 2

    C 2 H 2 +2 Br 2 = C 2 H 2 Br 4

    Находим количество вещества тетрабромэтана.

    ν(C 2 H 2 Br 4) = m(C 2 H 2 Br 4)/ М(C 2 H 2 Br 4) = 86,5/ 346 = 0,25 моль.

    Из уравнений реакций следует, что ν(C 2 H 2 Br 4) =ν(C 2 H 2) = ν(СаC 2) =0,25 моль. Отсюда мы можем найти массу чистого карбида кальция (без примесей).

    m(СаC 2) = ν(СаC 2) М(СаC 2) = 0,25 64 = 16 г.

    Определяем массовую долю СаC 2 в техническом карбиде.

    ω(СаC 2) =m(СаC 2)/m = 16/20 = 0,8 = 80%.

    Растворы. Массовая доля компонента раствора

    14. В бензоле объемом 170 мл растворили серу массой 1,8 г. Плотность бензола равна 0,88 г/мл. Определите массовую долю серы в растворе.

    Дано : V(C 6 H 6) =170 мл; m(S) = 1,8 г; ρ(С 6 C 6)=0,88 г/мл.

    Найти : ω(S) =?

    Решение : для нахождения массовой доли серы в растворе необходимо рассчитать массу раствора. Определяем массу бензола.

    m(С 6 C 6) = ρ(С 6 C 6) V(C 6 H 6) = 0,88 170 = 149,6 г.

    Находим общую массу раствора.

    m(р-ра) = m(С 6 C 6) + m(S) =149,6 + 1,8 = 151,4 г.

    Рассчитаем массовую долю серы.

    ω(S) =m(S)/m=1,8 /151,4 = 0,0119 = 1,19 %.

    15. В воде массой 40 г растворили железный купорос FeSO 4 7H 2 O массой 3,5 г. Определите массовую долю сульфата железа (II) в полученном растворе.

    Дано : m(H 2 O)=40 г; m(FeSO 4 7H 2 O)=3,5 г.

    Найти : ω(FeSO 4) =?

    Решение : найдем массу FeSO 4 содержащегося в FeSO 4 7H 2 O. Для этого рассчитаем количество вещества FeSO 4 7H 2 O.

    ν(FeSO 4 7H 2 O)=m(FeSO 4 7H 2 O)/М(FeSO 4 7H 2 O)=3,5/278=0,0125моль

    Из формулы железного купороса следует, что ν(FeSO 4)= ν(FeSO 4 7H 2 O)=0,0125 моль. Рассчитаем массу FeSO 4:

    m(FeSO 4) = ν(FeSO 4) М(FeSO 4) = 0,0125 152 = 1,91 г.

    Учитывая, что масса раствора складывается из массы железного купороса (3,5 г) и массы воды (40 г), рассчитаем массовую долю сульфата железа в растворе.

    ω(FeSO 4) =m(FeSO 4)/m=1,91 /43,5 = 0,044 =4,4 %.

    Задачи для самостоятельного решения

    1. На 50 г йодистого метила в гексане подействовали металлическим натрием, при этом выделилось 1,12 л газа, измеренного при нормальных условиях. Определите массовую долю йодистого метила в растворе. Ответ : 28,4%.
    2. Некоторый спирт подвергли окислению, при этом образовалась одноосновная карбоновая кислота. При сжигании 13,2 г этой кислоты получили углекислый газ, для полной нейтрализации которого потребовалось 192 мл раствора КОН с массовой долей 28%. Плотность раствора КОН равна 1,25 г/мл. Определите формулу спирта. Ответ : бутанол.
    3. Газ, полученный при взаимодействии 9,52 г меди с 50 мл 81 % раствора азотной кислоты, плотностью 1,45 г/мл, пропустили через 150 мл 20 % раствора NaOH плотностью 1,22 г/мл. Определите массовые доли растворенных веществ. Ответ : 12,5% NaOH; 6,48% NaNO 3 ; 5,26% NaNO 2 .
    4. Определите объем выделившихся газов при взрыве 10 г нитроглицерина. Ответ : 7,15 л.
    5. Образец органического вещества массой 4,3 г сожгли в кислороде. Продуктами реакции являются оксид углерода (IV) объемом 6,72 л (нормальные условия) и вода массой 6,3 г. Плотность паров исходного вещества по водороду равна 43. Определите формулу вещества. Ответ : С 6 Н 14 .

    Достаточно часто школьникам и студентам приходится составлять т. н. ионные уравнения реакций. В частности, именно этой теме посвящена задача 31, предлагаемая на ЕГЭ по химии. В данной статье мы подробно обсудим алгоритм написания кратких и полных ионных уравнений, разберем много примеров разного уровня сложности.

    Зачем нужны ионные уравнения

    Напомню, что при растворении многих веществ в воде (и не только в воде!) происходит процесс диссоциации - вещества распадаются на ионы. Например, молекулы HCl в водной среде диссоциируют на катионы водорода (H + , точнее, H 3 O +) и анионы хлора (Cl -). Бромид натрия (NaBr) находится в водном растворе не в виде молекул, а в виде гидратированных ионов Na + и Br - (кстати, в твердом бромиде натрия тоже присутствуют ионы).

    Записывая "обычные" (молекулярные) уравнения, мы не учитываем, что в реакцию вступают не молекулы, а ионы. Вот, например, как выглядит уравнение реакции между соляной кислотой и гидроксидом натрия:

    HCl + NaOH = NaCl + H 2 O. (1)

    Разумеется, эта схема не совсем верно описывает процесс. Как мы уже сказали, в водном растворе практически нет молекул HCl, а есть ионы H + и Cl - . Так же обстоят дела и с NaOH. Правильнее было бы записать следующее:

    H + + Cl - + Na + + OH - = Na + + Cl - + H 2 O. (2)

    Это и есть полное ионное уравнение . Вместо "виртуальных" молекул мы видим частицы, которые реально присутствуют в растворе (катионы и анионы). Не будем пока останавливаться на вопросе, почему H 2 O мы записали в молекулярной форме. Чуть позже это будет объяснено. Как видите, нет ничего сложного: мы заменили молекулы ионами, которые образуются при их диссоциации.

    Впрочем, даже полное ионное уравнение не является безупречным. Действительно, присмотритесь повнимательнее: и в левой, и в правой частях уравнения (2) присутствуют одинаковые частицы - катионы Na + и анионы Cl - . В процессе реакции эти ионы не изменяются. Зачем тогда они вообще нужны? Уберем их и получим краткое ионное уравнение:

    H + + OH - = H 2 O. (3)

    Как видите, все сводится к взаимодействию ионов H + и OH - c образованием воды (реакция нейтрализации).

    Все, полное и краткое ионные уравнения записаны. Если бы мы решали задачу 31 на ЕГЭ по химии, то получили бы за нее максимальную оценку - 2 балла.


    Итак, еще раз о терминологии:

    • HCl + NaOH = NaCl + H 2 O - молекулярное уравнение ("обычное" уравнения, схематично отражающее суть реакции);
    • H + + Cl - + Na + + OH - = Na + + Cl - + H 2 O - полное ионное уравнение (видны реальные частицы, находящиеся в растворе);
    • H + + OH - = H 2 O - краткое ионное уравнение (мы убрали весь "мусор" - частицы, которые не участвуют в процессе).

    Алгоритм написания ионных уравнений

    1. Составляем молекулярное уравнение реакции.
    2. Все частицы, диссоциирующие в растворе в ощутимой степени, записываем в виде ионов; вещества, не склонные к диссоциации, оставляем "в виде молекул".
    3. Убираем из двух частей уравнения т. н. ионы-наблюдатели, т. е. частицы, которые не участвуют в процессе.
    4. Проверяем коэффициенты и получаем окончательный ответ - краткое ионное уравнение.

    Пример 1 . Составьте полное и краткое ионные уравнения, описывающие взаимодействие водных растворов хлорида бария и сульфата натрия.

    Решение . Будем действовать в соответствии с предложенным алгоритмом. Составим сначала молекулярное уравнение. Хлорид бария и сульфат натрия - это две соли. Заглянем в раздел справочника "Свойства неорганических соединений" . Видим, что соли могут взаимодействовать друг с другом, если в ходе реакции образуется осадок. Проверим:

    Упражнение 2 . Дополните уравнения следующих реакций:

    1. KOH + H 2 SO 4 =
    2. H 3 PO 4 + Na 2 O=
    3. Ba(OH) 2 + CO 2 =
    4. NaOH + CuBr 2 =
    5. K 2 S + Hg(NO 3) 2 =
    6. Zn + FeCl 2 =

    Упражнение 3 . Напишите молекулярные уравнения реакций (в водном растворе) между: а) карбонатом натрия и азотной кислотой, б) хлоридом никеля (II) и гидроксидом натрия, в) ортофосфорной кислотой и гидроксидом кальция, г) нитратом серебра и хлоридом калия, д) оксидом фосфора (V) и гидроксидом калия.

    Искренне надеюсь, что у вас не возникло проблем с выполнением этих трех заданий. Если это не так, необходимо вернуться к теме "Химические свойства основных классов неорганических соединений".

    Как превратить молекулярное уравнение в полное ионное уравнение

    Начинается самое интересное. Мы должны понять, какие вещества следует записывать в виде ионов, а какие - оставить в "молекулярной форме". Придется запомнить следующее.

    В виде ионов записывают:

    • растворимые соли (подчеркиваю, только соли хорошо растворимые в воде);
    • щелочи (напомню, что щелочами называют растворимые в воде основания, но не NH 4 OH);
    • сильные кислоты (H 2 SO 4 , HNO 3 , HCl, HBr, HI, HClO 4 , HClO 3 , H 2 SeO 4 , ...).

    Как видите, запомнить этот список совсем несложно: в него входят сильные кислоты и основания и все растворимые соли. Кстати, особо бдительным юным химикам, которых может возмутить тот факт, что сильные электролиты (нерастворимые соли) не вошли в этот перечень, могу сообщить следующее: НЕвключение нерастворимых солей в данный список вовсе не отвергает того, что они являются сильными электролитами.

    Все остальные вещества должны присутствовать в ионных уравнениях в виде молекул. Тем требовательным читателям, которых не устраивает расплывчатый термин "все остальные вещества", и которые, следуя примеру героя известного фильма, требуют "огласить полный список" даю следующую информацию.

    В виде молекул записывают:

    • все нерастворимые соли;
    • все слабые основания (включая нерастворимые гидроксиды, NH 4 OH и сходные с ним вещества);
    • все слабые кислоты (H 2 СO 3 , HNO 2 , H 2 S, H 2 SiO 3 , HCN, HClO, практически все органические кислоты...);
    • вообще, все слабые электролиты (включая воду!!!);
    • оксиды (всех типов);
    • все газообразные соединения (в частности, H 2 , CO 2 , SO 2 , H 2 S, CO);
    • простые вещества (металлы и неметаллы);
    • практически все органические соединения (исключение - растворимые в воде соли органических кислот).

    Уф-ф, кажется, я ничего не забыл! Хотя проще, по-моему, все же запомнить список N 1. Из принципиально важного в списке N 2 еще раз отмечу воду.


    Давайте тренироваться!

    Пример 2 . Составьте полное ионное уравнение, описывающие взаимодействие гидроксида меди (II) и соляной кислоты.

    Решение . Начнем, естественно, с молекулярного уравнения. Гидроксид меди (II) - нерастворимое основание. Все нерастворимые основания реагируют с сильными кислотами с образованием соли и воды:

    Cu(OH) 2 + 2HCl = CuCl 2 + 2H 2 O.

    А теперь выясняем, какие вещества записывать в виде ионов, а какие - в виде молекул. Нам помогут приведенные выше списки. Гидроксид меди (II) - нерастворимое основание (см. таблицу растворимости), слабый электролит. Нерастворимые основания записывают в молекулярной форме. HCl - сильная кислота, в растворе практически полностью диссоциирует на ионы. CuCl 2 - растворимая соль. Записываем в ионной форме. Вода - только в виде молекул! Получаем полное ионное уравнение:

    Сu(OH) 2 + 2H + + 2Cl - = Cu 2+ + 2Cl - + 2H 2 O.

    Пример 3 . Составьте полное ионное уравнение реакции диоксида углерода с водным раствором NaOH.

    Решение . Диоксид углерода - типичный кислотный оксид, NaOH - щелочь. При взаимодействии кислотных оксидов с водными растворами щелочей образуются соль и вода. Составляем молекулярное уравнение реакции (не забывайте, кстати, о коэффициентах):

    CO 2 + 2NaOH = Na 2 CO 3 + H 2 O.

    CO 2 - оксид, газообразное соединение; сохраняем молекулярную форму. NaOH - сильное основание (щелочь); записываем в виде ионов. Na 2 CO 3 - растворимая соль; пишем в виде ионов. Вода - слабый электролит, практически не диссоциирует; оставляем в молекулярной форме. Получаем следующее:

    СO 2 + 2Na + + 2OH - = Na 2+ + CO 3 2- + H 2 O.

    Пример 4 . Сульфид натрия в водном растворе реагирует с хлоридом цинка с образованием осадка. Составьте полное ионное уравнение данной реакции.

    Решение . Сульфид натрия и хлорид цинка - это соли. При взаимодействии этих солей выпадает осадок сульфида цинка:

    Na 2 S + ZnCl 2 = ZnS↓ + 2NaCl.

    Я сразу запишу полное ионное уравнение, а вы самостоятельно проанализируете его:

    2Na + + S 2- + Zn 2+ + 2Cl - = ZnS↓ + 2Na + + 2Cl - .

    Предлагаю вам несколько заданий для самостоятельной работы и небольшой тест.

    Упражнение 4 . Составьте молекулярные и полные ионные уравнения следующих реакций:

    1. NaOH + HNO 3 =
    2. H 2 SO 4 + MgO =
    3. Ca(NO 3) 2 + Na 3 PO 4 =
    4. CoBr 2 + Ca(OH) 2 =

    Упражнение 5 . Напишите полные ионные уравнения, описывающие взаимодействие: а) оксида азота (V) с водным раствором гидроксида бария, б) раствора гидроксида цезия с иодоводородной кислотой, в) водных растворов сульфата меди и сульфида калия, г) гидроксида кальция и водного раствора нитрата железа (III).

    Химия – это наука о веществах, их свойствах и превращениях .
    То есть, если с окружающими нас веществами ничего не происходит, то это не относится к химии. Но что значит, «ничего не происходит»? Если в поле нас вдруг застала гроза, и мы все промокли, как говорится «до нитки», то это ли не превращение: ведь одежда была сухой, а стала мокрой.

    Если, к примеру взять железный гвоздь, обработать его напильником, а затем собрать железные опилки (Fe ) , то это ли так же не превращение: был гвоздь – стал порошок. Но если после этого собрать прибор и провести получение кислорода (О 2) : нагреть перманганат калия (КМпО 4) и собрать в пробирку кислород, а затем в неё поместить раскалённые «до красна» эти железные опилки, то они вспыхнут ярким пламенем и после сгорания превратятся в порошок бурого цвета. И это так же превращение. Так где же химия? Несмотря на то, что в этих примерах меняется форма (железный гвоздь) и состояние одежды (сухая, мокрая) – это не превращения. Дело в том, что сам по себе гвоздь как был веществом (железо), так им и остался, несмотря на другую свою форму, а воду от дождя как впитала наша одежда, так потом его и испарила в атмосферу. Сама вода не изменилась. Так что же такое превращения с точки зрения химии?

    Превращениями с точки зрения химии называются такие явления, которые сопровождаются изменением состава вещества. Возьмём в качестве примера тот же гвоздь. Не важно, какую форму он принял после обработки напильником, но после того как собранные от него железные опилки поместили в атмосферу кислорода - он превратился в оксид железа (Fe 2 O 3 ) . Значит, что-то всё-таки изменилось? Да, изменилось. Было вещество гвоздь, но под воздействием кислорода сформировалось новое вещество – оксид элемента железа. Молекулярное уравнение этого превращения можно отобразить следующими химическими символами:

    4Fe + 3O 2 = 2Fe 2 O 3 (1)

    Для непосвящённого в химии человека сразу возникают вопросы. Что такое «молекулярное уравнение», что такое Fe? Почему поставлены цифры «4», «3», «2»? Что такое маленькие цифры «2» и «3» в формуле Fe 2 O 3 ? Это значит, наступило время во всём разобраться по порядку.

    Знаки химических элементов.

    Несмотря на то, что химию начинают изучать в 8-м классе, а некоторые даже раньше, многим известен великий русский химик Д. И. Менделеев. И конечно же, его знаменитая «Периодическая система химических элементов». Иначе, проще, её называют «Таблица Менделеева».

    В этой таблице, в соответствующем порядке, располагаются элементы. К настоящему времени их известно около 120. Названия многих элементов нам были известны ещё давно. Это: железо, алюминий, кислород, углерод, золото, кремний. Раньше мы не задумываясь применяли эти слова, отождествляя их с предметами: железный болт, алюминиевая проволока, кислород в атмосфере, золотое кольцо и т.д. и т.д. Но на самом деле все эти вещества (болт, проволока, кольцо) состоят из соответствующих им элементов. Весь парадокс состоит в том, что элемент нельзя потрогать, взять в руки. Как же так? В таблице Менделеева они есть, а взять их нельзя! Да, именно так. Химический элемент – это абстрактное (то есть отвлечённое) понятие, и используется в химии, впрочем как и в других науках, для расчётов, составления уравнений, при решении задач. Каждый элемент отличается от другого тем, что для него характерна своя электронная конфигурация атома. Количество протонов в ядре атома равно количеству электронов в его орбиталях. К примеру, водород – элемент №1. Его атом состоит из 1-го протона и 1-го электрона. Гелий – элемент №2. Его атом состоит из 2-х протонов и 2-х электронов. Литий – элемент №3. Его атом состоит из 3-х протонов и 3-х электронов. Дармштадтий – элемент №110. Его атом состоит из 110-и протонов и 110-и электронов.

    Каждый элемент обозначается определённым символом, латинскими буквами, и имеет определённое прочтение в переводе с латинского. Например, водород имеет символ «Н» , читается как «гидрогениум» или «аш». Кремний имеет символ «Si» читается как «силициум». Ртуть имеет символ «Нg» и читается как «гидраргирум». И так далее. Все эти обозначения можно найти в любом учебнике химии за 8-й класс. Для нас сейчас главное уяснить то, что при составлении химических уравнений, необходимо оперировать указанными символами элементов.

    Простые и сложные вещества.

    Обозначая единичными символами химических элементов различные вещества (Hg ртуть , Fe железо , Cu медь , Zn цинк , Al алюминий ) мы по сути обозначаем простые вещества, то есть вещества, состоящие из атомов одного вида (содержащие одно и то же количество протонов и нейтронов в атоме). Например, если во взаимодействие вступают вещества железо и сера, то уравнение примет следующую форму записи:

    Fe + S = FeS (2)

    К простым веществам относятся металлы (Ва, К, Na, Mg, Ag), а так же неметаллы (S, P, Si, Cl 2 , N 2 , O 2 , H 2). Причём следует обратить
    особое внимание на то, что все металлы обозначаются единичными символами: К, Ва, Са, Аl, V, Mg и т.д., а неметаллы – либо простыми символами: C,S,P или могут иметь различные индексы, которые указывают на их молекулярное строение: H 2 , Сl 2 , О 2 , J 2 , P 4 , S 8 . В дальнейшем это будет иметь очень большое значение при составлении уравнений. Совсем не трудно догадаться, что сложными веществами являются вещества, образованные из атомов разного вида, например,

    1). Оксиды:
    оксид алюминия Al 2 O 3 ,

    оксид натрия Na 2 O,
    оксид меди CuO,
    оксид цинка ZnO,
    оксид титана Ti 2 O 3 ,
    угарный газ или оксид углерода (+2) CO,
    оксид серы (+6) SO 3

    2). Основания:
    гидроксид железа (+3) Fe(OH) 3 ,
    гидроксид меди Cu(OH) 2 ,
    гидроксид калия или щёлочь калия КOH,
    гидроксид натрия NaOH.

    3). Кислоты:
    соляная кислота HCl,
    сернистая кислота H 2 SO 3 ,
    азотная кислота HNO 3

    4). Соли:
    тиосульфат натрия Na 2 S 2 O 3 ,
    сульфат натрия или глауберова соль Na 2 SO 4 ,
    карбонат кальция или известняк СаCO 3,
    хлорид меди CuCl 2

    5). Органические вещества:
    ацетат натрия СН 3 СООNa,
    метан СН 4 ,
    ацетилен С 2 Н 2 ,
    глюкоза С 6 Н 12 О 6

    Наконец, после того как мы выяснили структуру различных веществ, можно приступать к составлению химических уравнений.

    Химическое уравнение.

    Само слово «уравнение» производное от слова «уравнять», т.е. разделить нечто на равные части. В математике уравнения составляют чуть ли не самую сущность этой науки. К примеру, можно привести такое простое уравнение, в котором левая и правая части будут равны «2»:

    40: (9 + 11) = (50 х 2) : (80 – 30);

    И в химических уравнениях тот же принцип: левая и правая части уравнения должны соответствовать одинаковым количествам атомов, участвующим в них элементов. Или, если приводится ионное уравнение, то в нём число частиц так же должно соответствовать этому требованию. Химическим уравнением называется условная запись химической реакции с помощью химических формул и математических знаков. Химическое уравнение по своей сути отражает ту или иную химическую реакцию, то есть процесс взаимодействия веществ, в процессе которых возникают новые вещества. Например, необходимо написать молекулярное уравнение реакции, в которой принимают участие хлорид бария ВаСl 2 и серная кислота H 2 SO 4. В результате этой реакции образуется нерастворимый осадок – сульфат бария ВаSO 4 и соляная кислота НСl:

    ВаСl 2 + H 2 SO 4 = BaSO 4 + 2НСl (3)

    Прежде всего необходимо уяснить, что большая цифра «2», стоящая перед веществом НСlназывается коэффициентом, а малые цифры «2», «4» под формулами ВаСl 2 , H 2 SO 4 ,BaSO 4 называются индексами. И коэффициенты и индексы в химических уравнениях выполняют роль множителей, а не слагаемых. Что бы правильно записать химическое уравнение, необходимо расставить коэффициенты в уравнении реакции . Теперь приступим к подсчёту атомов элементов в левой и правой частях уравнения. В левой части уравнения: в веществе ВаСl 2 содержатся 1 атом бария (Ва), 2 атома хлора (Сl). В веществе H 2 SO 4: 2 атома водорода (Н), 1 атом серы (S) и 4 атома кислорода (О) . В правой части уравнения: в веществе BaSO 4 1 атом бария (Ва) 1 атом серы (S) и 4 атома кислорода (О), в веществе НСl: 1 атом водорода (Н) и 1 атом хлора (Сl). Откуда следует, что в правой части уравнения количество атомов водорода и хлора вдвое меньше, чем в левой части. Следовательно, перед формулой НСl в правой части уравнения необходимо поставить коэффициент «2». Если теперь сложить количества атомов элементов, участвующих в данной реакции, и слева и справа, то получим следующий баланс:

    В обеих частях уравнения количества атомов элементов, участвующих в реакции, равны, следовательно оно составлено правильно.

    Химические уравнение и химические реакции

    Как мы уже выяснили, химические уравнения являются отражением химических реакций. Химическими реакциями называются такие явления, в процессе которых происходит превращение одних веществ в другие. Среди их многообразия можно выделить два основных типа:

    1). Реакции соединения
    2). Реакции разложения.

    В подавляющем своём большинстве химические реакции принадлежат к реакциям присоединения, поскольку с отдельно взятым веществом редко могут происходить изменения в его составе, если оно не подвергается воздействиям извне (растворению, нагреванию, действию света). Ничто так не характеризует химическое явление, или реакцию, как изменения, происходящие при взаимодействии двух и более веществ. Такие явления могут осуществляться самопроизвольно и сопровождаться повышением или понижением температуры, световыми эффектами, изменением цвета, образованием осадка, выделением газообразных продуктов, шумом.

    Для наглядности приведём несколько уравнений, отражающих процессы реакций соединения, в процессе которых получаются хлорид натрия (NaCl), хлорид цинка (ZnCl 2), осадок хлорида серебра (AgCl), хлорид алюминия (AlCl 3)

    Cl 2 + 2Nа = 2NaCl (4)

    СuCl 2 + Zn= ZnCl 2 + Сu (5)

    AgNO 3 + КCl = AgCl + 2KNO 3 (6)

    3HCl + Al(OH) 3 = AlCl 3 + 3Н 2 О (7)

    Cреди реакций соединения следует особым образом отметить следующие: замещения (5), обмена (6), и как частный случай реакции обмена – реакцию нейтрализации (7).

    К реакциям замещения относятся такие, при осуществлении которой атомы простого вещества замещают атомы одного из элементов в сложном веществе. В примере (5) атомы цинка замещают из раствора СuCl 2 атомы меди, при этом цинк переходит в растворимую соль ZnCl 2 , а медь выделяется из раствора в металлическом состоянии.

    К реакциям обмена относятся такие реакции, при которых два сложных вещества обмениваются своими составными частями. В случае реакции (6) растворимые соли AgNO 3 и КCl при сливании обоих растворов образуют нерастворимый осадок соли AgCl. При этом они обмениваются своими составными частями – катионами и анионами. Катионы калия К + присоединяются к анионам NO 3 , а катионы серебра Ag + – к анионам Cl - .

    К особому, частному случаю, реакций обмена относится реакция нейтрализации. К реакциям нейтрализации относятся такие реакции, в процессе которых кислоты реагируют с основаниями, в результате образуется соль и вода. В примере (7) соляная кислота HCl , реагируя с основанием Al(OH) 3 образует соль AlCl 3 и воду. При этом катионы алюминия Al 3+ от основания обмениваются с анионами Сl - от кислоты. В итоге происходит нейтрализация соляной кислоты.

    К реакциям разложения относятся такие, при котором из одного сложного образуются два и более новых простых или сложных веществ, но более простого состава. В качестве реакций можно привести такие, в процессе которых разлагаются 1). Нитрат калия (КNO 3) с образованием нитрита калия (КNO 2) и кислорода (O 2); 2). Перманганат калия (KMnO 4): образуются манганат калия (К 2 МnO 4), оксид марганца (MnO 2) и кислород (O 2); 3). Карбонат кальция или мрамор ; в процессе образуются углекислый газ (CO 2) и оксид кальция (СаО)

    2КNO 3 = 2КNO 2 + O 2 (8)
    2KMnO 4 = К 2 МnO 4 + MnO 2 + O 2 (9)
    СаCO 3 = CaO + CO 2 (10)

    В реакции (8) из сложного вещества образуется одно сложное и одно простое. В реакции (9) – два сложных и одно простое. В реакции (10) – два сложных вещества, но более простых по составу

    Разложению подвергаются все классы сложных веществ:

    1). Оксиды: оксид серебра 2Ag 2 O = 4Ag + O 2 (11)

    2). Гидроксиды: гидроксид железа 2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O (12)

    3). Кислоты: серная кислота H 2 SO 4 = SO 3 + H 2 O (13)

    4). Соли: карбонат кальция СаCO 3 = СаO + CO 2 (14)

    5). Органические вещества: спиртовое брожение глюкозы

    С 6 Н 12 О 6 = 2С 2 Н 5 ОH + 2CO 2 (15)

    Согласно другой классификации, все химические реакции можно разделить на два типа: реакции, идущие с выделением теплоты, их называют экзотермические, и реакции, идущие с поглощением теплоты – эндотермические. Критерием таких процессов является тепловой эффект реакции. Как правило, к экзотермическим реакциям относятся реакции окисления, т.е. взаимодействия с кислородом, например сгорание метана :

    СН 4 + 2O 2 = СО 2 + 2Н 2 О + Q (16)

    а к эндотермическим реакциям – реакции разложения, уже приводимые выше (11) – (15). Знак Q в конце уравнения указывает на то, выделяется ли теплота в процессе реакции (+Q) или поглощается (-Q):

    СаCO 3 = СаO+CO 2 - Q (17)

    Можно так же рассматривать все химические реакции по типу изменения степени окисления, участвующих в их превращениях элементов. К примеру, в реакции (17) участвующие в ней элементы не меняют свои степени окисления:

    Са +2 C +4 O 3 -2 = Са +2 O -2 +C +4 O 2 -2 (18)

    А в реакции (16) элементы меняют свои степени окисления:

    2Mg 0 + O 2 0 = 2Mg +2 O -2

    Реакции такого типа относятся к окислительно-восстановительным . Они будут рассматриваться отдельно. Для составления уравнений по реакциям такого типа необходимо использовать метод полуреакций и применять уравнение электронного баланса.

    После приведения различных типов химических реакций, можно приступать к принципу составлений химических уравнений, иначе, подбору коэффициентов в левой и правой их частях.

    Механизмы составления химических уравнений.

    К какому бы типу ни относилась та или иная химическая реакция, её запись (химическое уравнение) должна соответствовать условию равенства количества атомов до реакции и после реакции.

    Существуют такие уравнения (17), которые не требуют уравнивания, т.е. расстановки коэффициентов. Но в большинстве случаях, как в примерах (3), (7), (15), необходимо предпринимать действия, направленные на уравнивание левой и правой частей уравнения. Какими же принципами необходимо руководствоваться в таких случаях? Существует ли какая ни будь система в подборе коэффициентов? Существует, и не одна. К таковым системам относятся:

    1). Подбор коэффициентов по заданным формулам.

    2). Составление по валентностям реагирующих веществ.

    3). Составление по степеням окисления реагирующих веществ.

    В первом случае полагается, что нам известны формулы реагирующих веществ как до реакции, так и после. К примеру, дано следующее уравнение:

    N 2 + О 2 →N 2 О 3 (19)

    Принято считать, что пока не установлено равенство между атомами элементов до реакции и после, знак равенства (=) в уравнении не ставится, а заменяется стрелкой (→). Теперь приступим к собственно уравниванию. В левой части уравнения имеются 2 атома азота (N 2) и два атома кислорода (О 2), а в правой – два атома азота (N 2) и три атома кислорода (О 3). По количеству атомов азота его уравнивать не надо, но по кислороду необходимо добиться равенства, поскольку до реакции их участвовало два атома, а после реакции стало три атома. Составим следующую схему:

    до реакции после реакции
    О 2 О 3

    Определим наименьшее кратное между данными количествами атомов, это будет «6».

    О 2 О 3
    \ 6 /

    Разделим это число в левой части уравнения по кислороду на «2». Получим число «3», поставим его в решаемое уравнение:

    N 2 + 3О 2 →N 2 О 3

    Так же разделим число «6» для правой части уравнения на «3». Получим число «2», так же поставим его в решаемое уравнение:

    N 2 + 3О 2 → 2N 2 О 3

    Количества атомов кислорода и в левой и в правой частях уравнения стали равны, соответственно по 6 атомов:

    Но количество атомов азота в обеих частях уравнения не будут соответствовать друг другу:

    В левой – два атома, в правой – четыре атома. Следовательно, что бы добиться равенства, необходимо удвоить количество азота в левой части уравнения, поставив коэффициент «2»:

    Таким образом, равенство по азоту соблюдено и в целом, уравнение примет вид:

    2N 2 + 3О 2 → 2N 2 О 3

    Теперь в уравнении можно вместо стрелки поставит знак равенства:

    2N 2 + 3О 2 = 2N 2 О 3 (20)

    Приведём другой пример. Дано следующее уравнение реакции:

    Р + Cl 2 → РCl 5

    В левой части уравнения имеется 1 атом фосфора (Р) и два атома хлора (Cl 2), а в правой – один атом фосфора (Р) и пять атомов кислорода (Cl 5). По количеству атомов фосфора его уравнивать не надо, но по хлору необходимо добиться равенства, поскольку до реакции их участвовало два атома, а после реакции стало пять атома. Составим следующую схему:

    до реакции после реакции
    Cl 2 Cl 5

    Определим наименьшее кратное между данными количествами атомов, это будет «10».

    Cl 2 Cl 5
    \ 10 /

    Разделим это число в левой части уравнения по хлору на «2». Получим число «5», поставим его в решаемое уравнение:

    Р + 5Cl 2 → РCl 5

    Так же разделим число «10» для правой части уравнения на «5». Получим число «2», так же поставим его в решаемое уравнение:

    Р + 5Cl 2 → 2РCl 5

    Количества атомов хлора и в левой и в правой частях уравнения стали равны, соответственно по 10 атомов:

    Но количество атомов фосфора в обеих частях уравнения не будут соответствовать друг другу:

    Следовательно, что бы добиться равенства, необходимо удвоить количество фосфора в левой части уравнения, поставив коэффициент «2»:

    Таким образом, равенство по фосфору соблюдено и в целом, уравнение примет вид:

    2Р + 5Cl 2 = 2РCl 5 (21)

    При составлении уравнений по валентностям необходимо дать определение валентности и установить значения для наиболее известных элементов. Валентность – это одно из ранее применяемых понятий, в настоящее время в ряде школьных программ не используется. Но при его помощи легче объяснить принципы составления уравнений химических реакций. Под валентностью понимают число химических связей, которые тот или иной атом может образовывать с другим, или другими атомами . Валентность не имеет знака (+ или -) и обозначается римскими цифрами, как правило, над символами химических элементов, например:

    Откуда берутся эти значения? Как их применять при составлении химических уравнений? Числовые значения валентностей элементов совпадают с их номером группы Периодической системы химических элементов Д. И. Менделеева (Таблица 1).

    Для других элементов значения валентностей могут иметь иные значения, но никогда не больше номера группы, в которой они расположены. Причём для чётных номеров групп (IV и VI) валентности элементов принимают только чётные значения, а для нечётных – могут иметь как чётные, так и нечётные значения (Таблица.2).

    Конечно же, в значениях валентностей для некоторых элементов имеются исключения, но в каждом конкретном случае эти моменты обычно оговариваются. Теперь рассмотрим общий принцип составления химических уравнений по заданным валентностям для тех или иных элементов. Чаще всего данный метод приемлем в случае составления уравнений химических реакций соединения простых веществ, например, при взаимодействии с кислородом (реакции окисления ). Допустим, необходимо отобразить реакцию окисления алюминия . Но напомним, что металлы обозначаются единичными атомами (Al), а неметаллы, находящиеся в газообразном состоянии – с индексами «2» - (О 2). Сначала напишем общую схему реакции:

    Al + О 2 →AlО

    На данном этапе ещё не известно, какое правильное написание должно быть у оксида алюминия. И вот именно на данном этапе нам на помощь придёт знание валентностей элементов. Для алюминия и кислорода проставим их над предполагаемой формулой этого оксида:

    III II
    Al О

    После чего «крест»-на-«крест» у этих символов элементов поставим внизу соответствующие индексы:

    III II
    Al 2 О 3

    Состав химического соединения Al 2 О 3 определён. Дальнейшая схема уравнения реакции примет вид:

    Al+ О 2 →Al 2 О 3

    Остаётся только уравнять левую и правую его части. Поступим таким же способом, как в случае составления уравнения (19). Количества атомов кислорода уравняем, прибегая к нахождению наименьшего кратного:

    до реакции после реакции

    О 2 О 3
    \ 6 /

    Разделим это число в левой части уравнения по кислороду на «2». Получим число «3», поставим его в решаемое уравнение. Так же разделим число «6» для правой части уравнения на «3». Получим число «2», так же поставим его в решаемое уравнение:

    Al + 3О 2 → 2Al 2 О 3

    Что бы добиться равенства по алюминию, необходимо скорректировать его количество в левой части уравнения, поставив коэффициент «4»:

    4Al + 3О 2 → 2Al 2 О 3

    Таким образом, равенство по алюминию и кислороду соблюдено и в целом, уравнение примет окончательный вид:

    4Al + 3О 2 = 2Al 2 О 3 (22)

    Применяя метод валентностей, можно прогнозировать, какое вещество образуется в процессе химической реакции, как будет выглядеть его формула. Допустим, в реакцию соединения вступили азот и водород с соответствующими валентностями III и I. Напишем общую схему реакции:

    N 2 + Н 2 → NН

    Для азота и водорода проставим валентности над предполагаемой формулой этого соединения:

    Как и прежде «крест»-на-«крест» у этих символов элементов поставим внизу соответствующие индексы:

    III I
    N Н 3

    Дальнейшая схема уравнения реакции примет вид:

    N 2 + Н 2 → NН 3

    Уравнивая уже известным способом, через наименьшее кратное для водорода, равное «6»,получим искомые коэффициенты, и уравнение в целом:

    N 2 + 3Н 2 = 2NН 3 (23)

    При составлении уравнений по степеням окисления реагирующих веществ необходимо напомнить, что степенью окисления того или иного элемента называется число принятых или отданных в процессе химической реакции электронов. Степень окисления в соединениях в основном, численно совпадает со значениями валентностей элемента. Но отличаются знаком. Например, для водорода валентность равна I, а степень окисления (+1) или (-1). Для кислорода валентность равна II, а степень окисления (-2). Для азота валентности равны I,II,III,IV,V, а степени окисления (-3), (+1), (+2), (+3), (+4), (+5) и т.д. Степени окисления наиболее часто применяемых в уравнениях элементов, приведены в таблице 3.

    В случае реакций соединения принцип составления уравнений по степеням окисления такой же, как и при составлении по валентностям. Например, приведём уравнение реакции окисления хлора кислородом, в которой хлор образует соединение со степенью окисления +7. Запишем предполагаемое уравнение:

    Cl 2 + О 2 → ClО

    Поставим над предполагаемым соединением ClО степени окисления соответствующих атомов:

    Как и в предыдущих случаях установим, что искомая формула соединения примет вид:

    7 -2
    Cl 2 О 7

    Уравнение реакции примет следующий вид:

    Cl 2 + О 2 → Cl 2 О 7

    Уравнивая по кислороду, найдя наименьшее кратное между двумя и семи, равное «14», установим в итоге равенство:

    2Cl 2 + 7О 2 = 2Cl 2 О 7 (24)

    Несколько иной способ необходимо применять со степенями окисления при составлении реакций обмена, нейтрализации, замещения. В ряде случаев предоставляется затруднительным узнать: какие соединения образуются при взаимодействии сложных веществ?

    Как узнать: что получится в процессе реакции?

    Действительно, как узнать: какие продукты реакции могут возникнут в ходе конкретной реакции? К примеру, что образуется при взаимодействии нитрата бария и сульфата калия?

    Ва(NО 3) 2 + К 2 SO 4 → ?

    Может быть ВаК 2 (NО 3) 2 + SO 4 ? Или Ва + NО 3 SO 4 + К 2 ? Или ещё что-то? Конечно же, в процессе этой реакции образуются соединения: ВаSO 4 и КNО 3 . А откуда это известно? И как правильно написать формулы веществ? Начнём с того, что чаще всего упускается из вида: с самого понятия «реакция обмена». Это значит, что при данных реакциях вещества меняются друг с другом составными частями. Поскольку реакции обмена в большинстве своём осуществляются межу основаниями, кислотами или солями, то частями, которыми они будут меняться, являются катионы металлов (Na + , Mg 2+ ,Al 3+ ,Ca 2+ ,Cr 3+), ионов Н + или ОН - , анионов – остатков кислот, (Cl - , NO 3 2- ,SO 3 2- , SO 4 2- , CO 3 2- , PO 4 3-). В общем виде реакцию обмена можно привести в следующей записи:

    Kt1An1 + Kt2An1 = Kt1An2 + Kt2An1 (25)

    Где Kt1 и Kt2 – катионы металлов (1) и (2), а An1 и An2 – соответствующие им анионы (1) и (2). При этом обязательно надо учитывать, что в соединениях до реакции и после реакции на первом месте всегда устанавливаются катионы, а анионы – на втором. Следовательно, если в реакцию вступит хлорид калия и нитрат серебра , оба в растворённом состоянии

    KCl + AgNO 3 →

    то в процессе её образуются вещества KNO 3 и AgClи соответствующее уравнение примет вид:

    KCl + AgNO 3 =KNO 3 + AgCl (26)

    При реакциях нейтрализации протоны от кислот (Н +) будут соединяться с анионами гидроксила (ОН -) с образованием воды (Н 2 О):

    НCl + КОН = КCl + Н 2 O (27)

    Степени окисления катионов металлов и заряды анионов кислотных остатков указаны в таблице растворимости веществ (кислот, солей и оснований в воде). По горизонтали приведены катионы металлов, а по вертикали – анионы кислотных остатков.

    Исходя из этого, при составлении уравнения реакции обмена, необходимо вначале в левой его части установить степени окисления принимающих в этом химическом процессе частиц. Например, требуется написать уравнение взаимодействия между хлоридом кальция и карбонатом натрия.Составим исходную схему этой реакции:

    СаCl + NаСО 3 →

    Са 2+ Cl - + Nа + СО 3 2- →

    Совершив уже известное действие «крест»-на-«крест», определим реальные формулы исходных веществ:

    СаCl 2 + Nа 2 СО 3 →

    Исходя из принципа обмена катионами и анионами (25), установим предварительные формулы образующихся в ходе реакции веществ:

    СаCl 2 + Nа 2 СО 3 → СаСО 3 + NаCl

    Над их катионами и анионами проставим соответствующие заряды:

    Са 2+ СО 3 2- + Nа + Cl -

    Формулы веществ записаны правильно, в соответствии с зарядами катионов и анионов. Составим полное уравнение, уравняв левую и правую его части по натрию и хлору:

    СаCl 2 + Nа 2 СО 3 = СаСО 3 + 2NаCl (28)

    В качестве другого примера приведём уравнение реакции нейтрализации между гидроксидом бария и ортофосфорной кислотой:

    ВаОН + НРО 4 →

    Над катионами и анионами проставим соответствующие заряды:

    Ва 2+ ОН - + Н + РО 4 3- →

    Определим реальные формулы исходных веществ:

    Ва(ОН) 2 + Н 3 РО 4 →

    Исходя из принципа обмена катионами и анионами (25), установим предварительные формулы образующихся в ходе реакции веществ, учитывая, что при реакции обмена одним из веществ обязательно должна быть вода:

    Ва(ОН) 2 + Н 3 РО 4 → Ва 2+ РО 4 3- + Н 2 O

    Определим правильную запись формулы соли, образовавшейся в процессе реакции:

    Ва(ОН) 2 + Н 3 РО 4 → Ва 3 (РО 4) 2 + Н 2 O

    Уравняем левую часть уравнения по барию:

    3Ва (ОН) 2 + Н 3 РО 4 → Ва 3 (РО 4) 2 + Н 2 O

    Поскольку в правой части уравнения остаток ортофосфорной кислоты взят дважды, (РО 4) 2 , то слева необходимо также удвоить её количество:

    3Ва (ОН) 2 + 2Н 3 РО 4 → Ва 3 (РО 4) 2 + Н 2 O

    Осталось привести в соответствие количество атомов водорода и кислорода в правой части у воды. Так как слева общее количество атомов водорода равно 12, то справа оно так же должно соответствовать двенадцати, поэтому перед формулой воды необходимо поставить коэффициент «6» (поскольку в молекуле воды уже имеется 2 атома водорода). По кислороду так же соблюдено равенство: слева 14 и справа 14. Итак, уравнение имеет правильную форму записи:

    3Ва (ОН) 2 + 2Н 3 РО 4 → Ва 3 (РО 4) 2 + 6Н 2 O (29)

    Возможность осуществления химических реакций

    Мир состоит из великого множества веществ. Неисчислимо так же количество вариантов химических реакций между ними. Но можем ли мы, написав на бумаге то или иное уравнение утверждать, что ему будет соответствовать химическая реакция? Существует ошибочное мнение, что если правильно расставить коэффициенты в уравнении, то оно будет осуществимо и на практике. Например, если взять раствор серной кислоты и опустить в него цинк , то можно наблюдать процесс выделения водорода:

    Zn+ H 2 SO 4 = ZnSO 4 + H 2 (30)

    Но если в этот же раствор опустить медь, то процесс выделения газа наблюдаться не будет. Реакция не осуществима.

    Cu+ H 2 SO 4 ≠

    В случае, если будет взята концентрированная серная кислота, она будет реагировать с медью:

    Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2Н 2 O (31)

    В реакции (23) между газами азотом и водородом наблюдается термодинамическое равновесие, т.е. сколько молекул аммиака NН 3 образуется в единицу времени, столько же их и распадётся обратно на азот и водород. Смещение химического равновесия можно добиться повышением давления и понижением температуры

    N 2 + 3Н 2 = 2NН 3

    Если взять раствор гидроксида калия и прилить к нему раствор сульфата натрия , то никаких изменений наблюдаться не будет, реакция будет не осуществима:

    КОН + Na 2 SO 4 ≠

    Раствор хлорида натрия при взаимодействии с бромом не будет образовывать бром, несмотря на то, что данная реакция может быть отнесена к реакции замещения:

    NаCl + Br 2 ≠

    В чём же причины таких несоответствий? Дело в том, что оказывается недостаточно только правильно определять формулы соединений , необходимо знать специфику взаимодействия металлов с кислотами, умело пользоваться таблицей растворимости веществ, знать правила замещения в ряду активности металлов и галогенов. В этой статье излагаются только самые основные принципы как расставить коэффициенты в уравнениях реакций , как написать молекулярные уравнения , как определить состав химического соединения.

    Химия, как наука, чрезвычайно разнообразна и многогранна. В приведённой статье отражена лишь малая часть процессов, происходящих в реальном мире. Не рассмотрены типы , термохимические уравнения, электролиз, процессы органического синтеза и многое, многое другое. Но об этом в следующих статьях.

    blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.