• Три основных этапа процесс окисления жирных кислот. Жирные кислоты

    Для преобразования энергии, заключенной в жирных кислотах, в энергию связей АТФ существует метаболический путь окисления жирных кислот до СО 2 и воды, тесно связанный с циклом трикарбоновых кислот и дыхательной цепью. Этот путь называется β-окисление , т.к. происходит окисление 3-го углеродного атома жирной кислоты (β-положение) в карбоксильную группу, одновременно от кислоты отщепляется ацетильная группа, включающая С 1 и С 2 исходной жирной кислоты.

    Элементарная схема β-окисления

    Реакции β-окисления происходят в митохондриях большинства клеток организма (кроме нервных клеток). Для окисления используются жирные кислоты, поступающие в цитозоль из крови или появляющиеся при липолизе собственных внутриклеточных ТАГ. Суммарное уравнение окисления пальмитиновой кислоты выглядит следующим образом:

    Пальмитоил-SКоА + 7ФАД + 7НАД + + 7Н 2 O + 7HS-KoA → 8Ацетил-SКоА + 7ФАДН 2 + 7НАДН

    Этапы окисления жирных кислот

    1. Прежде, чем проникнуть в матрикс митохондрий и окислиться, жирная кислота должна активироваться в цитозоле. Это осуществляется присоединением к ней коэнзима А с образованием ацил-SКоА. Ацил-SКоА является высокоэнергетическим соединением. Необратимость реакции достигается гидролизом дифосфата на две молекулы фосфорной кислоты.

    Ацил-SКоА-синтетазы находятся в эндоплазматическом ретикулуме, на наружной мембране митохондрий и внутри них. Существует широкий ряд синтетаз, специфичных к разным жирным кислотам.

    Реакция активации жирной кислоты

    2. Ацил-SКоА не способен проходить через митохондриальную мембрану, поэтому существует способ его переноса в комплексе с витаминоподобным веществом карнитином . На наружной мембране митохондрий имеется фермент карнитин-ацилтрансфераза I .

    Карнитин-зависимый транспорт жирных кислот в митохондрию

    Карнитин синтезируется в печени и почках и затем транспортируется в остальные органы. Во внутриутробном периоде и в первые годы жизни значение карнитина для организма чрезвычайно велико. Энергообеспечение нервной системы детского организма и, в частности, головного мозга осуществляется за счет двух параллельных процессов: карнитин-зависимого окисления жирных кислот и аэробного окисления глюкозы. Карнитин необходим для роста головного и спинного мозга, для взаимодействия всех отделов нервной системы, ответственных за движение и взаимодействие мышц. Существуют исследования, связывающие с недостатком карнитина детский церебральный паралич и феномен "смерти в колыбели ".

    Дети раннего возраста, недоношенные и дети с малой массой особен-но чувствительны к недостаточности карнитина. Эндогенные запасы у них быстро истощаются при различных стрессовых ситуациях (инфекционные заболевания, желудочно-кишечные расстройства, нарушения вскармливания). Биосинтез карнитина резко ограничен в связи с небольшой мышечной массой, а поступление с обычными пищевыми продуктами неспособно поддержать достаточный уровень в крови и тканях.

    3. После связывания с карнитином жирная кислота переносится через мембрану транслоказой . Здесь на внутренней стороне мембраны фермент карнитин-ацилтрансфераза II вновь образует ацил-SКоА который вступает на путь β-окисления.

    4. Процесс собственно β-окисления состоит из 4-х реакций, повторяющихся циклически. В них последовательно происходит окисление (ацил-SКоА-дегидрогеназа), гидратирование (еноил-SКоА-гидратаза) и вновь окисление 3-го атома углерода (гидроксиацил-SКоА-дегидрогеназа). В последней, трансферазной, реакции от жирной кислоты отщепляется ацетил-SКоА . К оставшейся (укороченной на два углерода) жирной кислоте присоединяется HS-КоА, и она возвращается к первой реакции. Все повторяется до тех пор, пока в последнем цикле не образуются два ацетил-SКоА.

    Последовательность реакций β-окисления жирных кислот

    Расчет энергетического баланса β-окисления

    Ранее при расчете эффективности окисления коэффициент P/O для НАДH принимался равным 3,0, для ФАДH 2 – 2,0.

    По современным данным значение коэффициента P/O для НАДH соответствует 2,5, для ФАДH 2 – 1,5.

    При расчете количества АТФ, образуемого при β-окислении жирных кислот необходимо учитывать:

    • количество образуемого ацетил-SКоА – определяется обычным делением числа атомов углерода в жирной кислоте на 2.
    • число циклов β-окисления . Число циклов β-окисления легко определить исходя из представления о жирной кислоте как о цепочке двухуглеродных звеньев. Число разрывов между звеньями соответствует числу циклов β-окисления. Эту же величину можно подсчитать по формуле (n/2 -1), где n – число атомов углерода в кислоте.
    • число двойных связей в жирной кислоте. В первой реакции β-окисления происходит образование двойной связи при участии ФАД. Если двойная связь в жирной кислоте уже имеется, то необходимость в этой реакции отпадает и ФАДН 2 не образуется. Количество недополученных ФАДН 2 соответствует числу двойных связей. Остальные реакции цикла идут без изменений.
    • количество энергии АТФ , потраченной на активацию (всегда соответствует двум макроэргическим связям).

    Пример. Окисление пальмитиновой кислоты

    • так как имеется 16 атомов углерода, то при β-окислении образуется 8 молекул ацетил-SКоА . Последний поступает в ЦТК, при его окислении в одном обороте цикла образуется 3 молекулы НАДН (7,5 АТФ), 1 молекула ФАДН 2 (1,5 АТФ) и 1 молекула ГТФ, что эквивалентно 10 молекулам АТФ. Итак, 8 молекул ацетил-SКоА обеспечат образование 8×10=80 молекул АТФ.
    • для пальмитиновой кислоты число циклов β-окисления равно 7 . В каждом цикле образуется 1 молекула ФАДН 2 (1,5 АТФ) и 1 молекула НАДН (2,5 АТФ). Поступая в дыхательную цепь, в сумме они "дадут" 4 молекулы АТФ. Таким образом, в 7 циклах образуется 7×4=28 молекул АТФ.
    • двойных связей в пальмитиновой кислоте нет .
    • на активацию жирной кислоты идет 1 молекула АТФ, которая, однако, гидролизуется до АМФ, то есть тратятся 2 макроэргические связи или две АТФ .

    Таким образом, суммируя, получаем 80+28-2 =106 молекул АТФ образуется при окислении пальмитиновой кислоты.

    2.1. Окисление жирных кислот в клетках

    Высшие жирные кислоты могут окисляться в клетках тремя путями:

    а) путем a-окисления,

    б) путем b-окисления,

    в) путем w-окисления.

    Процессы a- и w-окисления высших жирных кислот идут в микросомах клеток с участием ферментов монооксигеназ и играют в основном пластическую функцию -- в ходе этих процессов идет синтез гидроксикислот, кетокислот и кислот с нечетным числом атомов углерода, необходимых для клеток. Так, в ходе a-окисления жирная кислота может быть укорочена на один атом углерода, превращаясь таким образом в кислоту с нечетным числом атомов"C", в соответствии с приведенной схемой:

    2.1.1. b-Окисление высших жирных кислот Основным способом окисления высших жирных кислот, по крайней мере в отношении общего количества окисляющихся в клетке соединений данного класса, является процесс b-окисления, открытый Кноопом еще в 1904 г. Этот процесс можно определить как процесс ступенчатого окислительного расщепления высших жирных кислот, в ходе которого идет последовательное отщепление двухуглеродных фрагментов в виде ацетил-КоА со стороны карбоксильной группы активированной молекулы высшей жирной кислоты.

    Поступающие в клетку высшие жирные кислоты подвергаются активации с превращением их в ацил-КоА (R-CO-SKoA), причем активация жирных кислот происходит в цитозоле. Сам же процесс b-окисления жирных кислот идет в матриксе митохондрий. В то же время внутренняя мембрана митохондрий непроницаема для ацил-КоА, в связи с чем встает вопрос о механизме транспорта ацильных остатков из цитозоля в матрикс митохондрий.

    Ацильные остатки переносятся через внутреннюю мембрану митохондрий с помощью специального переносчика, в качестве которого выступает карнитин (КН):

    В цитозоле с помощью фермента внешней ацилКоА:карнитинацилтрансферазы (Е1 на ниже приведенной схеме) остаток высшей жирной кислоты переносится с коэнзима А на карнитин с образованием ацилкарнитина:

    Ацилкарнитинин при участии специальной карнитин-ацилкарнитин-транслоказной системы проходит через мембрану внутрь митохондрии и в матриксе с помощью фермента внутренней ацил-КоА:карнитин-ацилтрансферазы (Е2) ацильный остаток передается с карнитина на внутримитохондриальный коэнзим А. В результате в матриксе митохондрий появляется активированный остаток жирной кислоты в виде ацил-КоА; высвобожденный карнитин с помощью той же самой транслоказы проходит через мембрану митохондрий в цитозоль, где может включаться в новый цикл переноса. Карнитин-ацилкарнитин-транслоказа, встроенная во внутреннюю мембрану митохондрий, осуществляет перенос молекулы ацилкарнитина внутрь митохондрии в обмен на молекулу карнитина, удаляемую из митохондрии.

    Активированная жирная кислота в матриксе митохондрий подвергается ступенчатому циклическому окислению по схеме:

    В результате одного цикла b-окисления радикал жирной кислоты укорачивается на 2 атома углерода, а отщепившийся фрагмент выделяется в виде ацетил-КоА. Суммарное уравнение цикла:

    В ходе одного цикла b-окисления, например,при превращении стеароил-КоА в пальмитоил-КоА с образованием ацетил-КоА, высвобождается 91 ккал/моль свободной энергии, однако основная часть этой энергии накапливается в виде энергии восстановленных коферментов, потери же энергии в виде теплоты составляют лишь около 8 ккал/моль.

    Образовавшийся ацетил-КоА может поступать в цикл Кребса, где он будет окисляться до конечных продуктов или же может использоваться для других нужд клетки, например, для синтеза холестерола. Укороченный на 2 атома углерода ацил-КоА вступает в новый цикл b-окисления. В результате нескольких последовательных циклов окисления вся углеродная цепь активированной жирной кислоты расщепляется до "n" молекул ацетил-КоА, причем значение "n" определяется числом атомов углерода в исходной жирной кислоте.

    Энергетический эффект одного цикла b-окисления можно оценить исходя из того, в ходе цикла образуются 1 молекула ФАДН2 и 1 молекула НАДН+Н. При их поступлении в цепь дыхательных ферментов будет синтезироваться 5 молекул АТФ (2 + 3). Если образовавшийся ацетил-КоА будет окислен в цикле Кребса, то клетка получит еще 12 молекул АТФ.

    Для стеариновой кислоты суммарное уравнение ее b-окисления имеет вид:

    Расчеты показывают, что при окислении стеариновой кислоты в клетке будет синтезироваться 148 молекул АТФ. При расчете энергетического баланса окисления из этого количества нужно исключить 2 макроэргических эквивалента, затрачиваемых при активации жирной кислоты (в ходе активации АТФ расщепляется до АМФ и 2 Н3РО4). Таким образом, при окислении стеариновой кислоты клетка получит 146 молекул АТФ.

    Для сравнения: при окислении 3 молекул глюкозы, содержащих также 18 атомов углерода, клетка получает только 114 молекул АТФ, т.е. высшие жирные кислоты являются более выгодным энергетическим топливом для клеток по сравнению с моносахаридами. По-видимому, это обстоятельство является одной из главных причин того, что энергетические резервы организма представлены преимущественно в виде триацилглицеринов, а не гликогена.

    Общее количество свободной энергии, выделяющееся при окислении 1 моля стеариновой кислоты составляет около 2632 ккал, из них накапливается в виде энергии макроэргических связей синтезированных молекул АТФ около 1100 ккал.Таким образом, аккумулируется примерно 40% всей выделяющейся свободной энергии.

    Скорость b-окисления высших жирных кислот определяется, во-первых, концентрацией жирных кислот в клетке и, во-вторых, активностью внешней ацил-КоА:карнитин-ацилтрансферазы. Активность фермента угнетается малонил-КоА. На смысле последнего регуляторного механизма мы остановимся несколько позднее, когда будем обсуждать координацию процессов окисления и синтеза жирных кислот в клетке.


    Оранжевыми миндалинами и аккумуляцией эфиров ХС в других ретикулоэндотелиальных тканях. Патология связана с ускоренным катаболизмом апо А-I . Переваривание и всасывание липидов. Желчь. Значение. На заре формирования современного учения о внешнесекреторной функции печени, когда естествоиспытатели располагали лишь первыми...

    Динамика химических превращений, происходящих в клетках, изучается биологической химией. Задачей физиологии является определение общих затрат веществ и энергии организмом и того, как они должны восполняться с помощью полноценного питания. Энергетический обмен служит показателем общего состояния и физиологической активности организма. Единица измерения энергии, обычно применяемая в биологии и...

    Кислоты, которые относят к незаменимым жирным кислотам (линолевая, линоленовая, арахидоновая), которые не синтезируются у человека и животных. С жирами в организм поступает комплекс биологически активных веществ: фосфолипиды, стерины. Триацилглицеролы – основная их функция – запасание липидов. Они находятся в цитозоле в виде мелкодисперсных эмульгированных маслянистых капелек. Сложные жиры: ...

    ... α,d – глюкоза глюкозо – 6 – фосфат С образованием глюкозо – 6 – фосфата пути гликолиза и гликогенолиза совпадают. Глюкозо – 6 – фосфат занимает ключевое место в обмене углеводов. Он вступает в следующие метаболические пути: глюкозо – 6 – фосфат глюкоза + Н3РО4 фруктозо – 6 – фосфат пентозный путь распада (поступает в кровь и др. ...

    Жировая ткань, состоящая из адипозоцитов, выполняет специфическую роль в липидном обмене. Около 65% массы жировой ткани приходится на долю отложенных в ней триацилглицеролов (ТАГ) - они представляют собой форму запасания энергии и выполняют в обмене жиров такую же функцию, как гликоген печени в обмене углеводов. Отложенные жиры в жировой ткани служит источником эндогенной воды и энергетическим резервом для организма человека. ТАГ используется в организме после предварительного расщепления (липолиза), в ходе которого освобождаются глицерин и свободные жирные кислоты.

    В клетках жировой ткани при участии липаз происходит распад ТАГ. Липаза находится в неактивной форме, она активируется гормонами (адреналином, норадреналином, глюкагоном, тироксином, глюкокортикоидами, СТГ, АКТГ) в ответ на стресс, голодание, охлаждение продуктами реакции являются моноацилглицерин и ВЖК.

    ВЖК с помощью альбуминов переносятся кровью к клеткам тканей, органов, где происходит их окисление.

    Окисление высших жирных кислот.

    Источники ВЖК:

    Липиды жировой ткани

    Липопротеины

    Триацилглицерины

    Фосфолипиды клеточных биомембран

    Окисление ВЖК происходят в митохондриях клеток, и называется бетта окислением. Доставка их к тканям и органам происходит при участии альбумина, а транспорт из цитоплазмы в митохондрии при участии карнитина.

    Процесс бета-окисления ВЖК складывается из следующих этапов:

    Активация ВЖК на наружной поверхности мембраны митохондрий при участии АТФ, конзима А и ионов магния с образованием активной формы ВЖК (ацил - КоА).

    Транспорт жирных кислот внутрь митохондрий возможен при присоединении активной формы жирной кислоты к карантину, находящемуся на наружной поверхности внутренней мембраны митохондрий. Образуется ацил-карнитин, обладающий способностью проходить через мембрану. На внутренней поверхности комплекс распадается и карнитин возвращается на наружную поверхность мембраны.

    Внутримитохондриальное окисление жирных кислот состоит из последовательных ферментативных реакций. В результате одного завершенного цикла окисления происходит отщепление от жирой кислоты одной молекулы ацетил-КоА, т.е. укорочение жирнокислотной цепи на два углеродных атома.Приэтом в результате двух дегидрогеназных реакций восстанавливается ФАД до ФАДН 2 и НАД + до НАДН 2 .

    рис. Окисление высших жирных кислот

    Т.о. завершая 1 цикл бега - окисления ВЖК, в результате которого ВЖК укоротилось на 2 углеродных звена. При бета -окислении выделилось 5АТФ и 12АТФ выделилось при окислении АЦЕТИЛ-КОА в ЦТК и сопряженных с ним ферментов дыхательной цепи. Окисление ВЖК будет происходить циклически одинаково, но только до последней стадии - стадии превращения масляной кислоты (БУТИРИЛ-КОА), которая имеет свои особенности, которые необходимо учитывать при подсчёте суммарного энергетического эффекта окисления ВЖК, когда в результате одного цикла образуется 2 молекулы АЦЕТИЛ-КОА, одна из них проходила бета -окисление с выделением 5АТФ, а другая нет.


    рис. Последняя стадия окисления высших жирных кислот

    ОКИСЛЕНИЕ ВЖК, ИМЕЮЩИХ НЕЧЕТНОЕ КОЛИЧЕСТВО УГЛЕРОДНЫХ ЗВЕНЬЕВ В ЦЕПИ

    Такие ВЖК поступают в организм человека в составе пищи с мясом жвачных животных, растений, морских организмов. Окисление таких ВЖК происходит также как и ВЖК, имеющих чётное количество углеродных звеньев в цепи, но только до последней стадии - стадии превращения ПРОПИОНИЛ-КОА. которая имеет свои особенности.

    Т.о. образуется СУКЦИНИЛ-КОА, который в дальнейшем окисляется в МИТОХОНДРИЯХ с участием ферментов ЦТК КРЕБСА и сопряженных с ним ферментов дыхательной цепи.

    Как уже указывалось, значительную часть энергии, извлекаемой в процессе окисления, животный организм получает из жирных кислот, которые расщепляются путем окисления при β-углеродном атоме.

    β-Окисление жирных кислот было впервые изучено в 19004 г. Ф. Кноопом. В дальнейшем было установлено, что β-окисление осуществляется только в митохондриях. Благодаря работам Ф. Линена с сотрудниками (1954-1958 г.г.) были выяснены основные ферментативные процессы окисления жирных кислот. В честь ученых, открывших данный путь окисления жирных кислот, процесс β-окисления получил название цикла Кноопа-Линена .

    β-Окисление - специфический путь ката­болизма жирных кислот, при котором от кар­боксильного конца жирной кислоты последо­вательно отделяется по 2 атома углерода в виде ацетил-КоА. Метаболический путь - β-окисление - назван так потому, что реакции окисле­ния жирной кислоты происходят у β-углеродного атома. Реакции β-окисления и последующего окисления ацетил-КоА в ЦТК (цикле трикарбоновых кислот) служат одним из основных источников энергии для синтеза АТФ по механизму окислительного фосфорилирования. β-Окисление жирных кислот происходит только в аэробных условиях.

    Все реакции многостадий­ного окисления ускоряются специфическими ферментами. β-окисление высших жирных кислот является универсальным биохи­мическим процессом, протекающим во всех живых организмах. У млекопитающих этот процесс происходит во многих тканях, в первую очередь в печени, почках и сердце. Окисление жирных кислот происходит в митохондриях. Ненасыщенные высшие жирные кислоты (олеиновая, линолевая, линоленовая и др.) предварительно восстанавливаются до предельных кислот.

    Проникновению жирных кислот в митохондриальный матрикс предшествует их активация путем образования соединения с коэнзимом А (НS~КоА), содержащего макроэргическую связь. Последняя, видимо, способствует более гладкому протека­нию реакций окисления образовавшегося соединения, которое называют ацилкоэнзимом А (ацил-КоА).

    Взаимодействие высших жирных кислот с КоА ускоряется специфическими лигазами - ацил-КоА-синтетазами трех видов, специфичных соответственно для кислот с коротким, средним и длин­ным углеводородными радикалами. Они локализованы в мембранах эндоплазматической сети и в наружной мембране митохондрий. По-видимому, все ацил-КоА-синтетазы являются мультимерами; так, фермент из микросом пе­чени имеет молекулярную массу 168 кДа и состоит из 6 идентичных субъеди­ниц. Реакция активации жирных кислот протекает в 2 этапа:

    а) сначала жирная кислота реагирует с АТФ с образаванием ациладенилата:

    RCOOH + ATФ → RCO~AMФ + ФФ

    б) затем идет образование активированной формы ацил-КоА:

    RCO~AMФ + НS~КоА → RCO~SKoA + AMФ

    Пирофосфат (ФФ) быстро гидролизуется под действием пирофосфатазы, в результате чего вся реакция оказывается необратимой: ФФ + H 2 O → 2Ф

    Суммарное уравнение :

    RCOOH + ATФ+ НS~КоА→ RCO~SKoA + AMФ + 2Ф

    Жирные кислоты с короткой и средней длиной цепи (от 4 до 12 атомов углерода) могут прони­кать в матрикс митохондрий путём диффузии, там происходит их активация. Жирные кислоты с длин­ной цепью, которые преобладают в организме человека (от 12 до 20 атомов углерода), активи­руются ацил-КоА синтетазами, расположенны­ми на внешней мембране митохондрий.

    Внутренняя мембрана митохондрий непроницаема для длинноцепочных ацил-КоА, образовавшихся в цитоплазме. Переносчиком активированных жирных кислот служит карнитин (витамин В т) , который поступает с пи­щей или синтезируется из незаменимых амино­кислот лизина и метионина.

    В наружной мембране митохондрий находится фермент карнитинацилтрансфераза I (карнитин-палъмитоилтрансфераза I), катализи- рующий ре­акцию с образованием ацилкарнитина:

    RCO~SKoA + H 3 C- N + -CH 2 -CH-CH 2 -COOH ↔ H 3 C- N + -CH 2 -CH-CH 2 -COOH + HS~KoA

    Ацил-КоА Карнитин (В т) Ацилкарнитин Кофермент А

    Этот фермент является регуляторным, он регулирует скорость поступления ацильных групп в митохондрии, а, следовательно, и скорость окисления жирных кислот.

    Образовавшийся ацилкарнитин проходит че­рез межмембранное пространство к наружной стороне внутренней мембраны и транспортиру­ется с помощью карнитинацилкарнитинтранслоказы на внутреннюю поверхность внутренней мембраны митохондрий, где фермент карнити­нацилтрансфераза II катализирует перенос ацила на внутримитохондриальный КоА, то есть обратную реакцию (рис.9).

    Рис.9. Перенос жирных кислот с длинным углеводородным радикалом через мембраны митохондрий

    Итак, ацил-КоА становится доступным для ферментов β-окисления. Свободный карни­тин возвращается на цитозольную сторону внутренней мембраны митохондрий той же транслоказой. После этого ацил-КоА включается в реак­ции β-окисления.

    В матриксе митохондрий происходит катаболизм (распад) ацил-КоА в результате повторяющейся последовательности из четырех реакций .

    1) Первой реакцией в каждом цикле является его окисление ферментом ацил-КоА-дегидрогеназой , коферментом которого является ФАД. Дегидрирование происходит между β - и α - атомами углерода, в результате чего в углеродной цепи образуется двойная связь и продуктом этой реакции является еноил-КоА:

    R-CH 2 -CH 2 CO~SKoA + ФАД → R-CH=CHCO~SKoA + ФАДН 2

    Ацил-КоА Еноил-КоА

    2) На втором этапе цикла окисления жирных кислот происходит гидратация двойной связи еноил-КоА, в результате чего образуется β-гидроксиацил-КоА. Реакция катализируется ферментом еноил-КоА-гидратазой :

    R-CH=CHCO~SKoA +Н 2 О → R-CH-CH 2 CO~SKoA

    Еноил-КоА β- гидроксиацил-КоА

    3) На третьем этапе цикла β-гидроксиацил-КоА подвергается дегидрированию (второму окислению) при участии фермента β-гидроксиацил-КоА-дегидрогеназы , коферментом которой является НАД + . Продуктом данной реакции является β-кетоацил-КоА:

    R-CH-CH 2 CO~SKoA + НАД + → R-CОCH 2 CO~SKoA + НАДН + Н +

    β- гидроксиацил-КоА β- кетоацил-КоА

    4) Последняя реакция цикла окисления жирных кислот катализируется ацетил-КоА-ацилтрансферазой (тиолазой) . На этом этапе β-кетоацил-КоА взаимодействует со свободным КоА и расщепляется с образованием, во-первых, двухуглеродного фрагмента, содержащего два концевых углеродных атома исходной жирной кислоты в виде ацетил-КоА, и, во-вторых, КоА-эфира жирной кислоты, укороченной теперь на два атома углерода. По аналогии с гидролизом эту реакцию называют тиолизом :

    R-CОCH 2 CO~SKoA + НS~KoA → CH 3 CO~SKoA + R 1 CO~SKoA

    β- кетоацил-КоА Ацетил-КоА Ацил-КоА ,

    укороченный на

    2 углеродных атома

    Укороченный ацил-КоА подвергается далее следующему циклу окисления, начинающемуся с реакции, катализируемой ацил-КоА-дегидрогеназой (окисление), затем следует реакция гидратации, реакция второго окисления, тиолазная реакция, то есть этот процесс многократно повторяется (рис.10).

    β- Окисление высших жирных кислот протекает в митохондриях. В них же ло­кализованы ферменты дыхательного цикла, ведущие передачу атомов водорода и электронов на кислород в условиях окислительного фосфорилирования АДФ, поэтому β-окисление высших жирных кислот является источником энергии для синтеза АТФ.

    Рис.10. Окисление жирной кислоты

    Окончательным про­дуктом β-окисления высших жирных кислот с четным числом углеродных атомов является ацетил-КоА , а с нечетным - пропионил-КоА .

    Если бы ацетил-КоА накапливался в организме, то запасы HS~KoA скоро исчер­пались бы, и окисление высших жирных кислот остановилось. Но этого не происхо­дит, так как КоА быстро освобождается из состава ацетил-КоА. К этому приводит ряд процессов: ацетил-КоА включается в цикл трикарбоновых и дикарбоновых кислот или весьма близкий к нему глиоксилевый цикл, или ацетил-КоА используется для синтеза стеролов и соединений, содержащих изопреноидные группировки и т.п.

    Пропионил-КоА, являющийся конечным продуктом β-окисления высших жирных кислот с нечетным числом углеродных атомов, превращается в сукцинил-КоА, который утилизируется через цикл трикарбоновых и дикарбоновых кислот.

    Около половины жирных кислот в организ­ме человека ненасыщенные .

    β-Окисление этих кислот идёт обычным путём до тех пор, пока двойная связь не окажется между третьим и чет­вёртым атомами углерода. Затем фер­мент еноил-КоА-изомераза перемещает двой­ную связь из положения 3-4 в положение 2-3 и изменяет цис-конформацию двойной связи на транс-, которая требуется для β-окисления. В этом цикле β-окисления первая реакция де­гидрирования не происходит, так как двойная связь в радикале жирной кислоты уже имеется. Далее циклы β-окисления продолжаются, не от­личаясь от обычного пути. Основные пу­ти метаболизма жирных кислот демонстрирует ри.11.

    Рис.11.Основные пу­ти метаболизма жирных кислот

    Не­давно было обнаружено, что помимо β-окисления – основного пути катаболизма жирных кислот, в тканях мозга происходит α-окисление жирных кис­лот с числом атомов углерода (С 13 -С 18), то есть последовательное отщепление одноуглеродных фрагментов от карбоксиль­ного конца молекулы.

    Этот тип окисления наиболее характерен для растительных тканей, но может происходить и в некоторых тканях животных. α-Окисление имеет циклический характер, причем цикл состоит из двух реакций.

    Первая реакция заключается в окислении жирной кислоты пероксидом водорода в соответствующий альдегид и СО 2 с участием специфической пероксидазы :

    В результате этой реакции углеводородная цепь укорачивается на один атом углерода.

    Суть второй реакции заключается в гидратации и окслении образовавшегося альдегида в соответствующую карбоновую кислоту под действием альдегиддегидрогеназы , содержащей окисленную форму кофермента НАД:

    Затем цикл α-окисления повторяется снова. В сравнении с β-окислением этот тип окисления энергетически менее выгоден.

    ω-Окисление жирных кислот. В печени животных и у некоторых микроорганизмов существует ферментная система, обеспечивающая ω-окисление жирных кислот, то есть окисление по концевой СН 3 -группе, обозначаемой буквой ω. Сначала под действием монооксигеназы происходят гидроксилирование с образованием ω-оксикислоты:

    Затем ω-оксикислота окисляется в ω-дикарбоновую кислоту под действием соответствующей дегидрогеназы :

    Полученная таким образом ω-дикарбоновая кислота укорачивается с любого конца с помощью реакций β-окисления.

    Окисление жирных кислот протекает в печени, почках, скелетных и сердечных мышцах, в жировой ткани.

    Ф.Кнооп высказал предположение, что окисление молекулы жирной кислоты в тканях организма происходит в b-окислении. В результате от молекулы жирной кислоты отщепляются двууглеродные фрагменты со стороны карбоксильной группы. Процесс b-окисления жирных кислот складывается из следующих этапов:

    Активация жирных кислот. Подобно первой стадии гликолиза сахаров перед b-окислением жирные кислоты подвергаются активации. Эта реакция протекает на наружной поверхности мембраны митохондрий при участии АТФ, коэнзима А (НS-КоА) и ионов Mg 2+ . Реакция катализируется ацил-КоА-синтетазой:

    В результате реакции образуется ацил-КоА, являющийся активной формой жирной кислоты.

    Транспорт жирных кислот внутрь митохондрий. Коэнзимная форма жирной кислоты, в равной мере как и свободные жирные кислоты, не обладает способностью проникать внутрь митохондрий, где, собственно, и протекает их окисление, переносчиком активированных жирных кислот через внутреннюю митохондриальную мембрану служит карнитин (g-триметиламино-b-оксибути-рат):

    После прохождения ацилкарнитина через мембрану митохондрий происходит обратная реакция – расщепления ацилкарнитина при участии НS-КоА и митохондриальной карнитин-ацилтрансферазы:

    Ацил-КоА в митохондрии подвергается процессу b-окисления.

    Этот путь окисления связан с присоединением атома кислорода к углеродному атому жирной кислоты, находящемуся в b-положении:

    При b-окислении происходит последовательное отщепление от карбоксильного конца углеродной цепи жирной кислоты двууглеродных фрагментов в форме ацетила-КоА и соответствующее укорачивание цепи жирной кислоты:

    В матриксе митохондрии ацил-КоА распадается в результате повторяющейся последовательности четырех реакций (рис.8).

    1) окисление с участием ацил-КоА-дегидрогеназы (ФАД-зависимой дегидрогеназы);

    2) гидратация, катализируемой еноил-КоА-гидратазой;

    3) второго окисления под действием 3-гидроксиацетил-КоА-дегидрогеназы (НАД-зависимой дегидрогеназы);

    4) тиолиза с участием ацетил-КоА-ацилтрансферазы.

    Совокупность этих четырех последовательностей реакций составляет один оборот b-окисления жирной кислоты (см. рис. 8).

    Образовавшийся ацетил-КоА подвергается окислению в цикле Кребса, а ацетил-КоА, укоротившийся на два углеродных атома, снова многократно проходит весь путь b-окисления вплоть до образования бутирил-КоА (4-углеродное соединение), на последнем этапе b-окисления распадается на две молекулы ацетил-КоА.

    При окислении жирной кислоты, содержащей n углеродных атомов, происходит n/2-1 цикл b-окисления (т.е. на один цикл меньше, чем n/2, так как при окислении бутирил-КоА сразу происходит образование двух молекул ацетил-КоА) и всего получится n/2 молекул ацетил-КоА.


    Например при окислении пальмитиновой кислоты (С 16) повторяется 16/2-1=7 циклов b-окисления и образуется 16/2=8 молекул ацетил-КоА.

    Рисунок 8 – Схема b-окисления жирной кислоты

    Баланс энергии. При каждом цикле b-окисления образуется одна молекула ФАДН 2 (см. рис. 8; реакция 1) и одна молекула НАДН+Н + (реакция 3). Последняя в процессе окисления дыхательной цепи и сопряженного с ним фосфорилирования дают: ФАДН 2 – 2 молекулы АТФ и НАДН+Н + – 3 молекулы АТФ, т.е. в сумме за один цикл образуется 5 молекул АТФ. При окислении пальмитиновой кислоты образуется 5*7=35 молекул АТФ. В процессе b-окисления пальмитиновой кислоты образуется 8 молекул ацетил-КоА, каждая из которых, «сгорая» в цикле Кребса, дает 12 молекул АТФ, а 8 молекул дадут 12*8=96 молекул АТФ.

    Таким образом, всего при полном b-окислении пальмитиновой кислоты образуется 35+96=131 молекула АТФ. С учетом одной молекулы АТФ, потраченной в самом начале на стадии активации жирной кислоты, общий энергетический выход при полном окислении одной молекулы пальмитиновой кислоты составит 131-1=130 молекул АТФ.

    Однако, образовавшийся в результате b-окисления жирных кислот ацетил-КоА, может не только окисляться до СО 2 , Н 2 О, АТФ, вступая в цикл Кребса, но использоваться на синтез холестерина, а также углеводов в глиоксилатном цикле.

    Глиоксилатный путь специфичен только для растений и бактерий, у животных организмов он отсутствует. Данный процесс синтеза углеводов из жиров подробно описан в методическом указании «Взаимосвязь процессов обмена углеводов, жиров и белков» (см. п. 2.1.1, с. 26).