• Почему процесс окисления жирных кислот называется. Биохимия

    Для преобразования энергии, заключенной в жирных кислотах, в энергию связей АТФ существует метаболический путь окисления жирных кислот до СО 2 и воды, тесно связанный с циклом трикарбоновых кислот и дыхательной цепью. Этот путь называется β-окисление , т.к. происходит окисление 3-го углеродного атома жирной кислоты (β-положение) в карбоксильную группу, одновременно от кислоты отщепляется ацетильная группа, включающая С 1 и С 2 исходной жирной кислоты.

    Элементарная схема β-окисления

    Реакции β-окисления происходят в митохондриях большинства клеток организма (кроме нервных клеток). Для окисления используются жирные кислоты, поступающие в цитозоль из крови или появляющиеся при липолизе собственных внутриклеточных ТАГ. Суммарное уравнение окисления пальмитиновой кислоты выглядит следующим образом:

    Пальмитоил-SКоА + 7ФАД + 7НАД + + 7Н 2 O + 7HS-KoA → 8Ацетил-SКоА + 7ФАДН 2 + 7НАДН

    Этапы окисления жирных кислот

    1. Прежде, чем проникнуть в матрикс митохондрий и окислиться, жирная кислота должна активироваться в цитозоле. Это осуществляется присоединением к ней коэнзима А с образованием ацил-SКоА. Ацил-SКоА является высокоэнергетическим соединением. Необратимость реакции достигается гидролизом дифосфата на две молекулы фосфорной кислоты.

    Ацил-SКоА-синтетазы находятся в эндоплазматическом ретикулуме, на наружной мембране митохондрий и внутри них. Существует широкий ряд синтетаз, специфичных к разным жирным кислотам.

    Реакция активации жирной кислоты

    2. Ацил-SКоА не способен проходить через митохондриальную мембрану, поэтому существует способ его переноса в комплексе с витаминоподобным веществом карнитином . На наружной мембране митохондрий имеется фермент карнитин-ацилтрансфераза I .

    Карнитин-зависимый транспорт жирных кислот в митохондрию

    Карнитин синтезируется в печени и почках и затем транспортируется в остальные органы. Во внутриутробном периоде и в первые годы жизни значение карнитина для организма чрезвычайно велико. Энергообеспечение нервной системы детского организма и, в частности, головного мозга осуществляется за счет двух параллельных процессов: карнитин-зависимого окисления жирных кислот и аэробного окисления глюкозы. Карнитин необходим для роста головного и спинного мозга, для взаимодействия всех отделов нервной системы, ответственных за движение и взаимодействие мышц. Существуют исследования, связывающие с недостатком карнитина детский церебральный паралич и феномен "смерти в колыбели ".

    Дети раннего возраста, недоношенные и дети с малой массой особен-но чувствительны к недостаточности карнитина. Эндогенные запасы у них быстро истощаются при различных стрессовых ситуациях (инфекционные заболевания, желудочно-кишечные расстройства, нарушения вскармливания). Биосинтез карнитина резко ограничен в связи с небольшой мышечной массой, а поступление с обычными пищевыми продуктами неспособно поддержать достаточный уровень в крови и тканях.

    3. После связывания с карнитином жирная кислота переносится через мембрану транслоказой . Здесь на внутренней стороне мембраны фермент карнитин-ацилтрансфераза II вновь образует ацил-SКоА который вступает на путь β-окисления.

    4. Процесс собственно β-окисления состоит из 4-х реакций, повторяющихся циклически. В них последовательно происходит окисление (ацил-SКоА-дегидрогеназа), гидратирование (еноил-SКоА-гидратаза) и вновь окисление 3-го атома углерода (гидроксиацил-SКоА-дегидрогеназа). В последней, трансферазной, реакции от жирной кислоты отщепляется ацетил-SКоА . К оставшейся (укороченной на два углерода) жирной кислоте присоединяется HS-КоА, и она возвращается к первой реакции. Все повторяется до тех пор, пока в последнем цикле не образуются два ацетил-SКоА.

    Последовательность реакций β-окисления жирных кислот

    Расчет энергетического баланса β-окисления

    Ранее при расчете эффективности окисления коэффициент P/O для НАДH принимался равным 3,0, для ФАДH 2 – 2,0.

    По современным данным значение коэффициента P/O для НАДH соответствует 2,5, для ФАДH 2 – 1,5.

    При расчете количества АТФ, образуемого при β-окислении жирных кислот необходимо учитывать:

    • количество образуемого ацетил-SКоА – определяется обычным делением числа атомов углерода в жирной кислоте на 2.
    • число циклов β-окисления . Число циклов β-окисления легко определить исходя из представления о жирной кислоте как о цепочке двухуглеродных звеньев. Число разрывов между звеньями соответствует числу циклов β-окисления. Эту же величину можно подсчитать по формуле (n/2 -1), где n – число атомов углерода в кислоте.
    • число двойных связей в жирной кислоте. В первой реакции β-окисления происходит образование двойной связи при участии ФАД. Если двойная связь в жирной кислоте уже имеется, то необходимость в этой реакции отпадает и ФАДН 2 не образуется. Количество недополученных ФАДН 2 соответствует числу двойных связей. Остальные реакции цикла идут без изменений.
    • количество энергии АТФ , потраченной на активацию (всегда соответствует двум макроэргическим связям).

    Пример. Окисление пальмитиновой кислоты

    • так как имеется 16 атомов углерода, то при β-окислении образуется 8 молекул ацетил-SКоА . Последний поступает в ЦТК, при его окислении в одном обороте цикла образуется 3 молекулы НАДН (7,5 АТФ), 1 молекула ФАДН 2 (1,5 АТФ) и 1 молекула ГТФ, что эквивалентно 10 молекулам АТФ. Итак, 8 молекул ацетил-SКоА обеспечат образование 8×10=80 молекул АТФ.
    • для пальмитиновой кислоты число циклов β-окисления равно 7 . В каждом цикле образуется 1 молекула ФАДН 2 (1,5 АТФ) и 1 молекула НАДН (2,5 АТФ). Поступая в дыхательную цепь, в сумме они "дадут" 4 молекулы АТФ. Таким образом, в 7 циклах образуется 7×4=28 молекул АТФ.
    • двойных связей в пальмитиновой кислоте нет .
    • на активацию жирной кислоты идет 1 молекула АТФ, которая, однако, гидролизуется до АМФ, то есть тратятся 2 макроэргические связи или две АТФ .

    Таким образом, суммируя, получаем 80+28-2 =106 молекул АТФ образуется при окислении пальмитиновой кислоты.

    Молекула жирной кислоты расщепляется в митохондрии путем постепенного отщепления двууглеродных фрагментов в виде ацетилкоэнзима А (ацетил-КоА).
    Обратите внимание, что первый этап бета-окисления представляет собой взаимодействие молекулы жирной кислоты с коэнзимом А (КоА) с образованием ацил-КоА жирной кислоты. В уравнениях 2, 3 и 4 бета-углерод (второй углерод справа) ацил-КоА жирной кислоты взаимодействует с молекулой кислорода, вследствие этого бета-углерод окисляется.

    В правой части уравнения 5 двууглеродная часть молекулы отщепляется, образуя ацетил-КоА, выделяющийся во внеклеточную жидкость. В то же время другая молекула КоА взаимодействует с концом оставшейся части молекулы жирной кислоты, вновь формируя ацил-КоА жирной кислоты. Сама молекула жирной кислоты в это время становится короче на 2 атома углерода, т.к. первый ацетил-КоА уже отделился от ее терминали.

    Затем эта укоротившаяся молекула ацил-КоА жирной кислоты выделяет еще 1 молекулу ацетил-КоА, что приводит к укорочению исходной молекулы жирной кислоты еще на 2 атома углерода. Кроме высвобождения молекул ацетил-КоА из молекул жирных кислот в ходе этого процесса выделяются 4 атома углерода.

    Окисление ацетил-КоА . Образующиеся в митохондриях в ходе процесса бета-окисления жирных кислот молекулы ацетил-КоА немедленно поступают в цикл лимонной кислоты и, взаимодействуя прежде всего с щавелево-уксусной кислотой, образуют лимонную кислоту, которая затем последовательно окисляется посредством хемоосмотическои. системы окисления митохондрий. Чистый выход реакции цикла лимонной кислоты на 1 молекулу аце-тил-КоА составляет:
    СН3СОСоА + Щавелево-уксусная кислота + 2Н20 + АДФ=> 2С02 + 8Н + НСоА + АТФ + Щавелево-уксусная кислота.

    Таким образом, после начального расщепления жирной кислоты с образованием ацетил-КоА окончательное их расщепление осуществляется так же, как расщепление ацетил-КоА, образовавшегося из пировиноградной кислоты в процессе метаболизма глюкозы. Образующиеся при этом атомы водорода окисляются той же системой окисления митохондрий, которая используется в процессе окисления углеводов, с образованием большого количества аденозинтрифосфата.

    При окислении жирных кислот образуется огромное количество АТФ. На рисунке показано, что 4 атома водорода, высвобождающиеся при отделении ацетил-КоА от цепочки жирной кислоты, выделяются в виде ФАДН2, НАД-Н и Н+, поэтому при расщеплении 1 молекулы стеариновой кислоты образуется, кроме 9 молекул ацетил-КоА, еще 32 атома водорода. В процессе расщепления каждой из 9 молекул ацетил-КоА в цикле лимонной кислоты выделяются еще 8 атомов водорода, что в итоге дает 72 атома водорода.

    Суммарно при расщеплении 1 молекулы стеариновой кислоты выделяются 104 атома водорода. Из этого общего количества 34 атома выделяются, будучи связанными с флавопротеинами, а остальные 70 высвобождаются в форме, связанной с никотинамидадениндинуклеотидом, т.е. в виде НАД-Н+ и Н+.

    Окисление водорода , связанного с этими двумя типами веществ, осуществляется в митохондриях, но они вступают в процесс окисления в разных точках, поэтому окисление каждого из 34 атомов водорода, связанных с флавопротеинами, приводит к выделению 1 молекулы АТФ. Еще 1,5 молекулы АТФ синтезируется из каждых 70 НАД+ и Н+. Это дает к 34 еще 105 молекул АТФ (т.е. всего 139) при окислении водорода, отщепляющегося при окислении каждой молекулы стеариновой кислоты.

    Дополнительно 9 молекул АТФ образуются в цикле лимонной кислоты (помимо АТФ, получаемой при окислении водорода), по 1 на каждую из 9 молекул метаболизирующегося ацетил-КоА. Итак, при полном окислении 1 молекулы стеариновой кислоты образуются в сумме 148 молекул АТФ. С учетом того, что при взаимодействии стеариновой кислоты с КоА на начальной стадии метаболизма этой жирной кислоты расходуются 2 молекулы АТФ, чистый выход АТФ составляет 146 молекул.

    Вернуться в оглавление раздела " "

    Как уже указывалось, значительную часть энергии, извлекаемой в процессе окисления, животный организм получает из жирных кислот, которые расщепляются путем окисления при β-углеродном атоме.

    β-Окисление жирных кислот было впервые изучено в 19004 г. Ф. Кноопом. В дальнейшем было установлено, что β-окисление осуществляется только в митохондриях. Благодаря работам Ф. Линена с сотрудниками (1954-1958 г.г.) были выяснены основные ферментативные процессы окисления жирных кислот. В честь ученых, открывших данный путь окисления жирных кислот, процесс β-окисления получил название цикла Кноопа-Линена .

    β-Окисление - специфический путь ката­болизма жирных кислот, при котором от кар­боксильного конца жирной кислоты последо­вательно отделяется по 2 атома углерода в виде ацетил-КоА. Метаболический путь - β-окисление - назван так потому, что реакции окисле­ния жирной кислоты происходят у β-углеродного атома. Реакции β-окисления и последующего окисления ацетил-КоА в ЦТК (цикле трикарбоновых кислот) служат одним из основных источников энергии для синтеза АТФ по механизму окислительного фосфорилирования. β-Окисление жирных кислот происходит только в аэробных условиях.

    Все реакции многостадий­ного окисления ускоряются специфическими ферментами. β-окисление высших жирных кислот является универсальным биохи­мическим процессом, протекающим во всех живых организмах. У млекопитающих этот процесс происходит во многих тканях, в первую очередь в печени, почках и сердце. Окисление жирных кислот происходит в митохондриях. Ненасыщенные высшие жирные кислоты (олеиновая, линолевая, линоленовая и др.) предварительно восстанавливаются до предельных кислот.

    Проникновению жирных кислот в митохондриальный матрикс предшествует их активация путем образования соединения с коэнзимом А (НS~КоА), содержащего макроэргическую связь. Последняя, видимо, способствует более гладкому протека­нию реакций окисления образовавшегося соединения, которое называют ацилкоэнзимом А (ацил-КоА).

    Взаимодействие высших жирных кислот с КоА ускоряется специфическими лигазами - ацил-КоА-синтетазами трех видов, специфичных соответственно для кислот с коротким, средним и длин­ным углеводородными радикалами. Они локализованы в мембранах эндоплазматической сети и в наружной мембране митохондрий. По-видимому, все ацил-КоА-синтетазы являются мультимерами; так, фермент из микросом пе­чени имеет молекулярную массу 168 кДа и состоит из 6 идентичных субъеди­ниц. Реакция активации жирных кислот протекает в 2 этапа:

    а) сначала жирная кислота реагирует с АТФ с образаванием ациладенилата:

    RCOOH + ATФ → RCO~AMФ + ФФ

    б) затем идет образование активированной формы ацил-КоА:

    RCO~AMФ + НS~КоА → RCO~SKoA + AMФ

    Пирофосфат (ФФ) быстро гидролизуется под действием пирофосфатазы, в результате чего вся реакция оказывается необратимой: ФФ + H 2 O → 2Ф

    Суммарное уравнение :

    RCOOH + ATФ+ НS~КоА→ RCO~SKoA + AMФ + 2Ф

    Жирные кислоты с короткой и средней длиной цепи (от 4 до 12 атомов углерода) могут прони­кать в матрикс митохондрий путём диффузии, там происходит их активация. Жирные кислоты с длин­ной цепью, которые преобладают в организме человека (от 12 до 20 атомов углерода), активи­руются ацил-КоА синтетазами, расположенны­ми на внешней мембране митохондрий.

    Внутренняя мембрана митохондрий непроницаема для длинноцепочных ацил-КоА, образовавшихся в цитоплазме. Переносчиком активированных жирных кислот служит карнитин (витамин В т) , который поступает с пи­щей или синтезируется из незаменимых амино­кислот лизина и метионина.

    В наружной мембране митохондрий находится фермент карнитинацилтрансфераза I (карнитин-палъмитоилтрансфераза I), катализи- рующий ре­акцию с образованием ацилкарнитина:

    RCO~SKoA + H 3 C- N + -CH 2 -CH-CH 2 -COOH ↔ H 3 C- N + -CH 2 -CH-CH 2 -COOH + HS~KoA

    Ацил-КоА Карнитин (В т) Ацилкарнитин Кофермент А

    Этот фермент является регуляторным, он регулирует скорость поступления ацильных групп в митохондрии, а, следовательно, и скорость окисления жирных кислот.

    Образовавшийся ацилкарнитин проходит че­рез межмембранное пространство к наружной стороне внутренней мембраны и транспортиру­ется с помощью карнитинацилкарнитинтранслоказы на внутреннюю поверхность внутренней мембраны митохондрий, где фермент карнити­нацилтрансфераза II катализирует перенос ацила на внутримитохондриальный КоА, то есть обратную реакцию (рис.9).

    Рис.9. Перенос жирных кислот с длинным углеводородным радикалом через мембраны митохондрий

    Итак, ацил-КоА становится доступным для ферментов β-окисления. Свободный карни­тин возвращается на цитозольную сторону внутренней мембраны митохондрий той же транслоказой. После этого ацил-КоА включается в реак­ции β-окисления.

    В матриксе митохондрий происходит катаболизм (распад) ацил-КоА в результате повторяющейся последовательности из четырех реакций .

    1) Первой реакцией в каждом цикле является его окисление ферментом ацил-КоА-дегидрогеназой , коферментом которого является ФАД. Дегидрирование происходит между β - и α - атомами углерода, в результате чего в углеродной цепи образуется двойная связь и продуктом этой реакции является еноил-КоА:

    R-CH 2 -CH 2 CO~SKoA + ФАД → R-CH=CHCO~SKoA + ФАДН 2

    Ацил-КоА Еноил-КоА

    2) На втором этапе цикла окисления жирных кислот происходит гидратация двойной связи еноил-КоА, в результате чего образуется β-гидроксиацил-КоА. Реакция катализируется ферментом еноил-КоА-гидратазой :

    R-CH=CHCO~SKoA +Н 2 О → R-CH-CH 2 CO~SKoA

    Еноил-КоА β- гидроксиацил-КоА

    3) На третьем этапе цикла β-гидроксиацил-КоА подвергается дегидрированию (второму окислению) при участии фермента β-гидроксиацил-КоА-дегидрогеназы , коферментом которой является НАД + . Продуктом данной реакции является β-кетоацил-КоА:

    R-CH-CH 2 CO~SKoA + НАД + → R-CОCH 2 CO~SKoA + НАДН + Н +

    β- гидроксиацил-КоА β- кетоацил-КоА

    4) Последняя реакция цикла окисления жирных кислот катализируется ацетил-КоА-ацилтрансферазой (тиолазой) . На этом этапе β-кетоацил-КоА взаимодействует со свободным КоА и расщепляется с образованием, во-первых, двухуглеродного фрагмента, содержащего два концевых углеродных атома исходной жирной кислоты в виде ацетил-КоА, и, во-вторых, КоА-эфира жирной кислоты, укороченной теперь на два атома углерода. По аналогии с гидролизом эту реакцию называют тиолизом :

    R-CОCH 2 CO~SKoA + НS~KoA → CH 3 CO~SKoA + R 1 CO~SKoA

    β- кетоацил-КоА Ацетил-КоА Ацил-КоА ,

    укороченный на

    2 углеродных атома

    Укороченный ацил-КоА подвергается далее следующему циклу окисления, начинающемуся с реакции, катализируемой ацил-КоА-дегидрогеназой (окисление), затем следует реакция гидратации, реакция второго окисления, тиолазная реакция, то есть этот процесс многократно повторяется (рис.10).

    β- Окисление высших жирных кислот протекает в митохондриях. В них же ло­кализованы ферменты дыхательного цикла, ведущие передачу атомов водорода и электронов на кислород в условиях окислительного фосфорилирования АДФ, поэтому β-окисление высших жирных кислот является источником энергии для синтеза АТФ.

    Рис.10. Окисление жирной кислоты

    Окончательным про­дуктом β-окисления высших жирных кислот с четным числом углеродных атомов является ацетил-КоА , а с нечетным - пропионил-КоА .

    Если бы ацетил-КоА накапливался в организме, то запасы HS~KoA скоро исчер­пались бы, и окисление высших жирных кислот остановилось. Но этого не происхо­дит, так как КоА быстро освобождается из состава ацетил-КоА. К этому приводит ряд процессов: ацетил-КоА включается в цикл трикарбоновых и дикарбоновых кислот или весьма близкий к нему глиоксилевый цикл, или ацетил-КоА используется для синтеза стеролов и соединений, содержащих изопреноидные группировки и т.п.

    Пропионил-КоА, являющийся конечным продуктом β-окисления высших жирных кислот с нечетным числом углеродных атомов, превращается в сукцинил-КоА, который утилизируется через цикл трикарбоновых и дикарбоновых кислот.

    Около половины жирных кислот в организ­ме человека ненасыщенные .

    β-Окисление этих кислот идёт обычным путём до тех пор, пока двойная связь не окажется между третьим и чет­вёртым атомами углерода. Затем фер­мент еноил-КоА-изомераза перемещает двой­ную связь из положения 3-4 в положение 2-3 и изменяет цис-конформацию двойной связи на транс-, которая требуется для β-окисления. В этом цикле β-окисления первая реакция де­гидрирования не происходит, так как двойная связь в радикале жирной кислоты уже имеется. Далее циклы β-окисления продолжаются, не от­личаясь от обычного пути. Основные пу­ти метаболизма жирных кислот демонстрирует ри.11.

    Рис.11.Основные пу­ти метаболизма жирных кислот

    Не­давно было обнаружено, что помимо β-окисления – основного пути катаболизма жирных кислот, в тканях мозга происходит α-окисление жирных кис­лот с числом атомов углерода (С 13 -С 18), то есть последовательное отщепление одноуглеродных фрагментов от карбоксиль­ного конца молекулы.

    Этот тип окисления наиболее характерен для растительных тканей, но может происходить и в некоторых тканях животных. α-Окисление имеет циклический характер, причем цикл состоит из двух реакций.

    Первая реакция заключается в окислении жирной кислоты пероксидом водорода в соответствующий альдегид и СО 2 с участием специфической пероксидазы :

    В результате этой реакции углеводородная цепь укорачивается на один атом углерода.

    Суть второй реакции заключается в гидратации и окслении образовавшегося альдегида в соответствующую карбоновую кислоту под действием альдегиддегидрогеназы , содержащей окисленную форму кофермента НАД:

    Затем цикл α-окисления повторяется снова. В сравнении с β-окислением этот тип окисления энергетически менее выгоден.

    ω-Окисление жирных кислот. В печени животных и у некоторых микроорганизмов существует ферментная система, обеспечивающая ω-окисление жирных кислот, то есть окисление по концевой СН 3 -группе, обозначаемой буквой ω. Сначала под действием монооксигеназы происходят гидроксилирование с образованием ω-оксикислоты:

    Затем ω-оксикислота окисляется в ω-дикарбоновую кислоту под действием соответствующей дегидрогеназы :

    Полученная таким образом ω-дикарбоновая кислота укорачивается с любого конца с помощью реакций β-окисления.

    Все реакции многостадийного окисления ускоряются специфическими ферментами. β-Окисление высших жирных кислот является универсальным биохимическим процессом, протекающим во всех живых организмах. У млекопитающих этот процесс происходит во многих тканях, в первую очередь в печени , почках и сердце . Ненасыщенные высшие жирные кислоты (олеиновая, линолевая, линоленовая и др.) предварительно восстанавливаются до предельных кислот.

    Помимо β-окисления, которое является основным процессом деградации жирных кислот у животных и человека, существуют ещё α-окисление и ω-окисление. α-Окисление встречается как у растений , так и у животных, однако, весь процесс происходит в пероксисомах . ω-Окисление менее распространено среди животных (позвоночные), встречается главным образом у растений . Процесс ω-окисления происходит в эндоплазматическом ретикулуме (ЭР).

    β-Окисление было открыто в 1904 году немецким химиком (Franz Knoop ) в опытах с кормлением собак различными жирными кислотами, в которых один атом водорода на концевом атоме ω-С углерода метильной группы -CH 3 был замещен на фенильный радикал -С 6 H 5 .

    Францем Кноопом было выдвинуто предположение, что окисление молекулы жирной кислоты в тканях организма происходит в β-положении. В результате от молекулы жирной кислоты последовательно отщепляются двууглеродные фрагменты со стороны карбоксильной группы .

    Теория β-окисления жирных кислот, предложенная Ф. Кноопом, в значительной мере послужила основой современных представлений о механизме окисления жирных кислот .

    Жирные кислоты, которые образовались в клетке путём гидролиза триацилглицеридов или поступившие в неё из крови должны быть активированы, так как сами по себе они являются метаболическими инертными веществами, и вследствие этого не могут быть подвержены биохимическим реакциям, включая и окисление. Процесс их активирования происходит в цитоплазме при участии АТФ , кофермента A (HS-СoA) и ионов Mg 2+ . Реакция катализируется ферментом ацил-КоА-синтетазой жирных кислот с длинной цепью (Long-chain-fatty-acid-CоА ligase , КФ), процесс является эндергоническим , то есть протекает за счёт использования энергии гидролиза молекулы АТФ :

    ацил-КоА-синтетазы находятся как в цитоплазме , так и в матриксе митохондрий. Эти ферменты отличаются по специфичности к жирным кислотам с различной длиной углеводородной цепи. Жирные кислоты с короткой и средней длиной цепи (от 4 до 12 атомов углерода) могут проникать в матрикс митохондрий путём диффузии . Активация этих жирных кислот происходит в матриксе митохондрий .

    Жирные кислоты с длинной цепью, которые преобладают в организме человека (от 12 до 20 атомов углерода), активируются ацил-КоА-синтетазами, расположенными на внешней стороне внешней мембраны митохондрий.

    Выделившийся в ходе реакции пирофосфат гидролизуется ферментом пирофосфатазой (КФ):

    При этом происходит сдвиг равновесия реакции в сторону образования ацил-КоА .

    Поскольку процесс активации жирных кислот происходит в цитоплазме, то далее необходим транспорт ацил-КоА через мембрану внутрь митохондрии.

    Транспортировка жирных кислот с длинной цепью через плотную митохондриальную мембрану осуществляется посредством карнитина . В наружной мембране митохондрий находится фермент карнитинацилтрансфераза I (карнитин-пальмитоилтрансфераза I , CPT1, КФ), катализирующий реакцию с образованием ацилкарнитина (ацильная группа переносится с атома серы КоА на гидроксильную группу карнитина с образованием ацилкарнитина (карнитин-СOR)), который диффундирует через внутреннюю митохондриальную мембрану :

    Образовавшийся ацилкарнитин проходит через межмембранное пространство к наружной стороне внутренней мембраны и транспортируется с помощью фермента карнитин-ацилкарнитин-транслоказы (CACT) .

    После прохождения ацилкарнитина (карнитин-СOR) через мембрану митохондрии происходит обратная реакция - расщепление ацилкарнитина при участии КоА-SH и фермента митохондриальной карнитинацил-КоА-трансферазы или карнитинацилтрансферазы II (карнитин-пальмитоилтрансфераза II , CPT2, КФ):

    Таким образом, ацил-КоА становится доступным для ферментов β-окисления. Свободный карнитин возвращается на цитоплазматическую сторону внутренней мембраны митохондрии той же транслоказой .

    Процесс трансмембранного переноса жирных кислот может ингибироваться малонил-КоА .

    В матриксе митохондрии происходит окисление жирных кислот в цикле Кнооппа - Линена. В нём участвуют четыре фермента, которые последовательно действуют на ацил-КоА. Конечным метаболитом данного цикла является ацетил-КоА . Сам процесс состоит из четырёх реакций.

    Образовавшийся ацетил-КоА подвергается окислению в цикле Кребса, а ацил-КоА, укоротившийся на два углеродных атома, снова многократно проходит весь путь β-окисления вплоть до образования бутирил-КоА (4-углеродное соединение), который в свою очередь окисляется до 2 молекул ацетил-КоА. ФАДH 2 и НАДH·H поступают прямо в дыхательную цепь .

    Для полной деградации длинноцепочечной жирной кислоты цикл должен многократно повторяться, так, например, для стеарил-CоА (С 17 Н 35 СО~SКоА) необходимы восемь циклов .

    Особенности окисления жирных кислот с нечётным числом углеродных атомов

    В результате окисления жирных кислот с нечётным числом углеродных атомов образуются не только ацетил-КоА, ФАД H 2 и НАДH , но и одна молекула пропионил-КоА (C 2 H 5 -CO~SКоА).

    При окислении жирных кислот, имеющих две (-С=C-C-C=C-) и более ненасыщенные связи, требуется ещё один дополнительный фермент β-гидроксиацил-КоА-эпимераза (КФ).

    Скорость окисления ненасыщенных жирных кислот много выше, чем насыщенных, что обусловлено наличием двойных связей. Например, если взять за эталон скорость окисления насыщенной стеариновой кислоты , то скорость окисления олеиновой в 11, линолевой в 114, линоленовой в 170, а арахидоновой почти в 200 раз выше, чем стеариновой .

    В результате переноса электронов по ЭТЦ от ФАД H 2 и НАДH синтезируется по 5 молекул АТФ (2 от ФАДH 2 , и 3 от НАДH). В случае окисления пальмитиновой кислоты проходит 7 циклов β-окисления (16/2-1=7), что ведёт к образованию 5 7=35 молекул АТФ. В процессе β-окисления пальмитиновой кислоты образуется n молекул ацетил-КоА, каждая из которых, при полном сгорании в цикле трикарбоновых кислот, даёт 12 молекул АТФ, а 8 молекул дадут 12 8 = 96 молекул АТФ.

    Таким образом, всего при полном окислении пальмитиновой кислоты образуется 35+96=131 молекула АТФ. Однако с учётом одной молекулы АТФ , которая гидролизуется до АМФ , то есть тратятся 2 макроэргические связи или две АТФ, в самом начале на процесс активирования (образования пальмитоил-CоА) общий энергетический выход при полном окислении одной молекулы пальмитиновой кислоты в условиях животного организма составит 131-2=129 молекул .

    Суммарное уравнение окисления пальмитиновой кислоты выглядит следующим образом:

    Формула для расчёта общего количества АТФ которые генерируются в результате процесса β-окисления:

    Энергетический расчёт β-окисления для некоторых жирных кислот представлен в виде таблицы.

    Помимо β-окисления жирных кислот, происходящего в митохондриях существует и внемитохондриальное окисление. Жирные кислоты, имеющие бóльшую длину цепи (от С 20), не могут быть окислены в митохондриях из-за наличия плотной двойной мембраны, которая воспрепятствует процессу переноса их через межмембранное пространство. Поэтому окисление длиноцепочечных жирных кислот (С 20 -С 22 и более) происходит в пероксисомах . В пероксисомах процесс β-окисления жирных кислот протекает в модифицированном виде. Продуктами окисления в данном случае являются ацетил-КоА, октаноил-КоА и пероксид водорода Н 2 О 2 . Ацетил-КоА образуется на стадии, катализируемой ФАД-зависимой дегидрогеназой. Ферменты пероксисом не атакуют жирные кислоты с короткими цепями, и процесс β-окисления останавливается при образовании октаноил-КоА.

    Данный процесс не сопряжён с окислительным фосфорилированием и генерацией АТФ и поэтому октаноил-КоА и ацетил-КоА переходят с КоА на карнитин и направляются в митохондрии, где окисляются с образованием АТФ .

    Активация пероксисомального β-окисления происходит при избыточном содержании в потребляемой пищи жирных кислот начиная с С 20 , а также при приёме гиполипидемических лекарственных препаратов.

    Скорость β-окисления зависит также от активности фермента карнитин-пальмитоилтрансферазы I (CPTI). В печени этот фермент ингибируется малонил-КоА, веществом, образующимся при биосинтезе жирных кислот .

    В мышцах карнитин-пальмитоилтрансфераза I (CPTI) также ингибируется малонил-КоА. Хотя мышечная ткань не синтезирует жирные кислоты, в ней имеется изофермент ацетил-КоА-карбоксилазы, синтезирующий малонил-КоА для регуляции β-окисления. Данный изофермент фосфорилируется протеинкиназой А , которая активируется в клетках под действием адреналина , и АМФ-зависимой протеинкиназой и таким образом происходит его ингибирование; концентрация малонил-КоА снижается. Вследствие этого, при физической работе, когда в клетке появляется АМФ , под действием адреналина активируется β-окисление, однако, его скорость зависит ещё и от доступности кислорода. Поэтому β-окисление становится источником энергии для мышц только через 10-20 минут после начала физической нагрузки (так называемые аэробные нагрузки), когда приток кислорода к тканям увеличивается .

    Дефекты карнитиновой транспортной системы проявляются в ферментопатиях и дефицитных состояний карнитина в организме человека.

    Наиболее распространены дефицитные состояния, связанные с потерей карнитина во время некоторых состояний организма:

    Признаками и симптомами недостатка карнитина являются приступы гипогликемии, возникающие из-за снижения глюконеогенеза в результате нарушения процесса β-окисления жирных кислот, уменьшение образования кетоновых тел, сопровождающееся повышением содержания свободных жирных кислот (СЖК) в плазме крови, мышечная слабость (миастения), а также накопление липидов .

    Генетические нарушения ацил-КоА-дегидрогеназ жирных кислот средней цепи

    В митохондриях имеется 3 вида ацил-КоА-дегидрогеназ , окисляющих жирные кислоты с длинной, средней или короткой цепью радикала. Жирные кислоты по мере укорочения радикала в процессе β-окисления могут последовательно окисляться этими ферментами. Генетический дефект (КФ) - MCADD (сокр. от М edium-c hain a cyl-СоА d ehydrogenase d eficiency) наиболее распространён по сравнению с другими наследственными заболеваниями - 1:15 000. Частота дефектного гена ACADM , кодирующего ацил-КоА-дегидрогеназы жирных кислот со средней длиной цепи, среди европейской популяции - 1:40. Это аутосомно-рецессивное заболевание , возникающее в результате замены нуклеотида Т ( .

    Генетические нарушения ацил-КоА-дегидрогеназ жирных кислот с очень длинной углеродной цепью

    Дикарбоновая ацидурия заболевание, связанное с повышенной экскрецией С 6 -С 10 -дикарбоновых кислот и возникающей на этом фоне гипогликемии , однако, не связанная с повышением содержания кетоновых тел. Причиной данного заболевания является MCADD. При этом нарушается β-окисление и усиливается ω-окисление длинноцепочечных жирных кислот, которые укорачиваются до среднецепочечных дикарбоновых кислот , выводимых из организма .

    Синдром Цельвегера или цереброгепаторенальный синдром, редкое наследственное заболевание описано американским педиатром Хансом Цельвегером (англ. H.U. Zellweger ), которое проявляется в отсутствии пероксисом во всех тканях организма. Вследствие этого в организме, особенно в мозгу накапливаются полиеновые кислоты (С 26 -С 38), представляющие собой длиноцепочечные жирные кислоты . Примерная заболеваемость нарушениями биогенеза пероксисом спектра синдрома Цельвегера составляет 1:50 000 новорождённых в США и 1:500 000 новорождённых в Японии. Для синдрома характерны: пренатальная задержка роста; мышечная гипотония; затруднение сосания; арефлексия; долихоцефалия; высокий лоб; круглое плоское лицо; одутловатые веки; гипертелоризм; монголоидный разрез глаз; катаракта ; пигментная ретинопатия или дисплазия зрительного нерва; колобома радужки; низко расположенные ушные раковины; микрогнатия ; расщелина неба; латеральное или медиальное искривление пальцев; поражение печени (гепатомегалия (увеличение объёма печени), дисгинезия внутрипеченочных протоков, цирроз печени); поликистоз почек; нередко - тяжёлые, несовместимые с жизнью аномалии лёгких и пороки сердца; задержка психомоторного развития; судороги ; стойкая желтуха. При патоморфологическом исследовании выявляют задержку миелинизации нейронов; накопление липидов в астроцитах; в печени, почках и мозге уменьшено содержание плазмогенов; в клетках печени и других тканях организма снижено количество пероксисом, большинство пероксисомных ферментов неактивны. В крови повышена активность трансаминаз и отмечается стойкая гипербилирубинемия . В присутствии гипоглицина происходит накопление главным образом бутирил-КоА, который гидролизуется до свободной масляной кислоты (бутирата). Масляная кислота в избытке попадает в

    100 р бонус за первый заказ

    Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

    Узнать цену

    Жирными кислотами называют как предельные, так и непредельные высшие карбоновые кислоты, углеводородняая цепь которых содержит более 12 углеродных атомов. В организме окисление жирных кислот – чрезвычайно важный процесс, и оно может быть направлено на α, β и ω-углеродные атомы молекул карбоновых кислот. Среди этих процессов наиболее часто происходит β-окисление. Установлено, что окисление жирных кислот протекает в печени, почках, скелетных и сердечной мышцах, в жировой ткани. В мозговой ткани скорость окисления жирных кислот весьма незначительна; основным источником энергии в мозговой ткани служит глюкоза.

    В 1904 г. Ф. Кнооп (F. Knoop) выдвинул гипотезу β-окисления жирных кислот на основании опытов по скармливанию собакам различных жирных кислот, в которых один атом водорода в концевой метильной группе (ω-углеродного атома) был замещен радикалом (С6Н5–).

    Жирные кислоты, входящие в состав естественных жиров животных и растений, имеют четное число углеродных атомов. Любая такая кислота, от которой отщепляется по паре углеродных атомов, в конце концов проходит через стадию масляной кислоты. После очередного β-окисления масляная кислота становится ацетоуксусной. Последняя затем гидролизуется до двух молекул уксусной кислоты. Теория β-окисления жирных кислот, предложенная Ф. Кноопом, в значительной мере послужила основой современных представлений о механизме окисления жирных кислот.

    β-Окисление жирных кислот . Образующийся при гидролизе жиров карбоновые кислоты подвергаются β-окислению в митохондриях, куда они поступают в виде соответствующих ацилкоферментов А. β-Окисление – это 4 последовательных ОВР.

    І реакция. Дегидрирование

    // дегидрогеназа /

    С15Н31 – СН2 – СН2 – С + ФАД С = С + ФАД(2Н)

    ЅКоА Н СОЅКоА

    Стерилкоэнзим А трансизомер стерилкоэнзима А

    ІІ реакция Гидратация

    / гидратаза //

    С = С + Н2О С15Н31 – СН – СН2 – С

    Н СОЅКоА ОН ЅКоА

    Трансизомер стерилкоэнзима А L-изомер β-окисикарбоноврй кислоты

    ІІІ реакция Дегидрирование

    // дегидрогеназа //

    С15Н31 – СН – СН2 – С + НАД+ С15Н31 – С – СН2 – С + НАДН + Н+

    ОН ЅКоА О ЅКоА

    β-оксокислота

    ІV реакция. Расщепление

    // тиолаза // //

    С15Н31 – С – СН2 – С + НЅКоА С15Н31 – С СН3 – С

    О ЅКоА ЅКоА ЅКоА

    Пальмитокоэнзим А Ацетилкоэнзим А

    На новое в цикл Кребса для

    β-окисление окончательного

    окисления

    до СО2 и Н2О

    Четыре рассмотренные реакции процесса β-окисления представляют собой цикл, в ходе которого происходит укорочение углеродной цепи на два углеродных атома. Пальмитокоэнзим А вновь подвергается β-окислению, повторяя данный цикл. При β-окислении одной молекулы стеариновой кислоты образуется 40 молекул АТФ, а включая и цикл Кребса, котором окисляется образующийся ацетилкоэнзим А – 146 молекул АТФ. Это говорит о важности процессов окисления жирных кислот с точки зрения энергетики организма.

    α-Окисление жирных кислот. В растениях под действием ферментов происходит окисление жирных кислот по α-углеродному атому – α-окисление. Это цикл, состоящий из двух реакций.

    І реакция заключается в окислении жирной кислоты пероксидом водорода с участием соответствующей пероксидазы в соответствующий альдегид и СО2.

    Пероксидаза //

    R – СН2 – СООН + 2 Н2О2 R – С + СО2

    В результате этой реакции углеродная цепь укорачивается на один углеродный атом.

    ІІ реакция состоит в гидратации и окислении образующегося альдегида в соответствующую карбоновую кислоту под действием альдегидодегидрогеназы с окисленной формой НАД+:

    // альдегидо- //

    R – С + Н2О + НАД+ дегидрогеназа R – С + НАД(Н) + Н+

    Цикл α-окисления характерен только для растений.

    ω-Окисление жирных кислот. В печени животных и у некоторых микроорганизмов существует ферментная система, обеспечивающая ω-окисление, т.е. окисление по концевой СН3-группе. Сначала под действием монооксигеназы происходит гидроксилирование с образованием ω-оксикислоты:

    ω монооксигеназа

    СН3 – R – СООН + «О» НОСН2 – R – СООН

    НОСН2 – R – СООН + Н2О + 2НАД+ дегидрогеназа НООС– R – СООН + 2 НАД (Н) + 2Н+

    ω-дикарбоновая кислота

    Полученная ω-дикарбоновая кислота укорачивается с любого конца посредством реакции β-окисления.

    Если карбоновая кислота имеет разветвления, то её биологическое окисление прекращается, дойдя до места разветвления цепи.