• Пирамида животных от простейших до сложных. Простейшие

    Подцарство Одноклеточные животные включает в себя животных, тело которых состоит из одной клетки . Эта клетка является сложным организмом с присущими ему физиологическими процессами : дыханием, пищеварением, выделением, размножением и раздражением.

    Форма клеток у них разнообразна и может быть постоянной (жгутиковые, инфузории) и непостоянной (амеба). Органоидами движения являются ложноножки, жгутики и реснички . Питание у простейших бывает автотрофным (фотосинтез) и гетеротрофным (фагоцитоз, пиноцитоз). Размножение у одноклеточных бесполое (деление ядра – митоз, а затем продольный или поперечный цитокинез, а также множественное деление) и половое : конъюгация (инфузории), копуляция (жгутиковые).

    Около 30 000 видов одноклеточных объединены в несколько типов . Наиболее многочисленными являются типы Саркожгутиконосцы и тип Инфузории .

    Тип Инфузории насчитывает более 7 500 видов. Это высокоорганизованные простейшие, которые имеют постоянную форму тела.

    Типичным представителем типа является инфузория-туфелька . Тело инфузории покрыто плотной оболочкой. У нее два ядра: большое (макронуклеус ), которое регулирует все жизненные процессы , и маленькое (микронуклеус ), играющее основную роль в размножении . Инфузория-туфелька питается водорослями, бактериями, а также некоторыми простейшими. Реснички инфузории колеблются, что «продвигает» пищу в ротовое отверстие, а затем в глотку, на дне которой образуются пищеварительные вакуоли , где и происходит переваривание пищи и всасыванием питательных веществ. Через порошицу – особый орган – удаляются непереваренные остатки. Функции выделения осуществляются сократительными вакуолями . Размножается инфузория-туфелька , как и амеба, бесполым способом (поперечное деление цитоплазмы, малое ядро делится митотически, большое – амитотически). Характерен и половой процесс – конъюгация. Это временное соединение двух особей, между которыми образуется цитоплазматический мостик , посредством которого они обмениваются разделившимися малыми ядрами. Половой процесс служит для обновления генетической информации.

    Инфузории являются звеном в пищевых цепях. Обитающие в желудках жвачных, инфузории способствуют их пищеварению.

    Типичным представителем является амеба обыкновенная.

    Живет амеба в пресноводных водоемах. Форма тела ее непостоянная. Ложноножки служат также и для захвата пищи – бактерий, одноклеточных водорослей, некоторых простейших. Непереваренные остатки выбрасываются из любого места амебы. Животное дышит всей своей поверхностью тела: кислород, растворенный в воде, посредством диффузии проникает в организм амебы, а образующийся при дыхании в клетке углекислый газ выделяется наружу. Животное обладает раздражимостью. Размножается амеба делением : сначала митотически делится ядро, а затем происходит деление цитоплазмы. При неблагоприятных условиях происходит инцистирование .

    Типичный представитель Жгутиковых – эвглена зеленая – имеет веретеновидную форму. От переднего конца тела эвглены отходит длинный тонкий жгутик: вращая им, эвглена передвигается, как бы ввинчиваясь в воду. В цитоплазме эвглены ядро и несколько окрашенных овальных телец – хроматофоры (20 штук), содержащие хлорофилл (на свету эвглена питается автотрофно). Светочувствительный глазок помогает эвглене находить освещенные места. При длительном содержании в темноте эвглена теряет свой хлорофилл и переходит к питанию готовыми органическими веществами, которые она всей поверхностью тела всасывает из воды. Дышит эвглена всей поверхностью тела. Размножение осуществляется делением надвое (продольное).

    Остались вопросы? Не знаете, кто такие « Простейшие» ?
    Чтобы получить помощь репетитора – зарегистрируйтесь .
    Первый урок – бесплатно!

    сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

    Задачи и упражнения к школьному курсу общей экологии 1

    Продолжение. См. No 15/2002

    (Печатается с сокращениями)

    Пути воздействия организмов на среду обитания

    1. Прошел дождь. Из-за тучи вышло яркое жаркое солнце. На какой территории через пять часов содержание почвенной влаги будет больше (тип почвы одинаков): а) на свежевспаханном поле; б) на спелом пшеничном поле; в) на невыпасном лугу; г) на выпасном лугу? Объясните, почему.
    (Ответ: в. Чем гуще растительный покров, тем меньше нагревается почва и, следовательно, меньше будет испаряться воды.)

    2. Объясните, почему овраги чаще формируются в нелесных природных зонах: степях, полупустынях, пустынях. Какая человеческая деятельность приводит к формированию оврагов?
    (Ответ: корневые системы деревьев и кустарников в большей степени, чем травянистой растительности, задерживают грунт при его смыве водными потоками, поэтому в местах произрастания лесной и кустарниковой растительности овраги формируются реже, чем на полях, в степях и пустынях. При полном отсутствии растительности (включая травянистую) любой поток воды будет вызывать почвенную эрозию. При уничтожении растительности человеком (пахота, выпас скота, строительство и т. д.) всегда будет наблюдаться усиленная эрозия почвы.)

    3.* Установлено, что летом после жары над лесом выпадает большее количество осадков, чем над близлежащим обширным полем. Почему? Объясните роль характера растительности в формировании уровня засушливости тех или иных территорий.
    (Ответ: над открытыми пространствами воздух нагревается быстрее и сильнее, чем над лесом. Поднимаясь вверх, горячий воздух превращает капли дождя в пар. В результате во время дождя над обширным полем изливается меньше воды, чем над лесом.
    Участки с разреженной растительностью или лишенные ее вообще сильнее нагреваются солнечными лучами, что вызывает усиленное испарение влаги, а в итоге – истощение запасов подземных вод, засоление почвы. Горячий воздух поднимается вверх. Если участок пустыни достаточно большой, то это способно значительно изменять направление воздушных потоков. В результате на оголенные участки выпадает меньше осадков, что приводит к еще большему опустыниванию территории.)

    4.* В некоторых странах и на островах законом запрещен ввоз живых коз. Власти мотивируют это тем, что козы могут навредить природе страны и изменить климат. Объясните, как это может быть.
    (Ответ: козы питаются не только травой, но и листьями, а также корой деревьев. Козы способны быстро размножаться. Достигнув высокой численности, они беспощадно уничтожают деревья и кустарники. В странах с недостаточным количеством осадков это вызывает дальнейшее иссушение климата. В итоге обедняется природа, что негативно сказывается на экономике страны.)

    Приспособительные формы организмов

    1.* Почему на мелких океанических островах среди насекомых преобладают бескрылые формы, тогда как на близлежащем материке или крупных островах – крылатые?
    (Ответ: мелкие океанические острова продуваются сильными ветрами. В результате все летающие мелкие животные, не способные противостоять сильным ветрам, сдуваются в океан и погибают. В ходе эволюции насекомые, обитающие на мелких островах, утратили способность к полету.)

    Приспособительные ритмы жизни

    1. Перечислите известные вам абиотические факторы среды, значения которых периодично и закономерно изменяются во времени.
    (Ответ: освещенность в течение суток, освещенность в течение года, температура в течение суток, температура в течение года, влажность в течение года и другие.)

    2. Выберите из списка те места обитания, в которых животные не имеют суточных ритмов (при условии, что они обитают только в пределах одной конкретной среды): озеро, река, воды пещер, поверхность почвы, дно океана на глубине 6000 м, горы, кишечник человека, лес, воздух, грунт на глубине 1,5 м, дно реки на глубине 10 м, кора живого дерева, почва на глубине 10 см.
    (Ответ: воды пещер, дно океана, грунт на глубине 1,5 м.)

    3. В каком месяце обычно приносят потомство антарктические пингвины Адели в европейских зоопарках– в мае, июне, октябре или феврале? Ответ объясните.
    (Ответ: в октябре – в Южном полушарии в это время весна.)

    4. Почему окончился неудачей эксперимент с акклиматизацией южноамериканской ламы в горах Тянь-Шаня (где климат похож на привычные условия родных мест животного)?
    (Ответ: несовпадение годичных циклов – детеныши животных появлялись на свет в новом месте обитания осенью (на родине животных в это время весна) и погибали холодной зимой от бескормицы.)

    ГЛАВА 2. СООБЩЕСТВА И ПОПУЛЯЦИИ

    Типы взаимодействий организмов

    2. Из предложенного списка составьте пары организмов, которые в природе могут находиться в мутуалистических (взаимовыгодных) отношениях между собой (названия организмов можно использовать только один раз): пчела, гриб подберезовик, актиния, дуб, береза, рак-отшельник, осина, сойка, клевер, гриб подосиновик, липа, клубеньковые азотфиксирующие бактерии.
    (Ответ: пчела – липа; гриб подберезовик – береза; актиния – рак-отшельник; дуб – сойка; гриб подосиновик – осина; клевер – клубеньковые азотфиксирующие бактерии.)

    3. Из предложенного списка составьте пары организмов, между которыми в природе могут образовываться трофические (пищевые) связи (названия организмов можно использовать только один раз): цапля, ива, тля, амеба, заяц-русак, муравей, водные бактерии, кабан, лягушка, смородина, росянка, муравьиный лев, комар, тигр.
    (Ответ: цапля – лягушка; заяц-русак – ива; тля – смородина; амеба – водные бактерии; муравьиный лев – муравей; тигр – кабан; росянка – комар.)

    4. Лишайники являются примером биотических отношений:

    (Ответ: а.)

    5. Примером отношений типа «хищник – жертва» не могут служить пары организмов (выберите правильный ответ):

    а) щука и карась;
    б) лев и зебра;
    в) пресноводная амеба и бактерия;
    г) муравьиный лев и муравей;
    д) шакал и гриф.

    (Ответ: д.)

    6.

    А. Взаимодействие двух или нескольких особей, последствия которого для одних отрицательны, а для других безразличны.
    Б. Взаимодействие двух или нескольких особей, при котором одни используют остатки пищи других, не причиняя им вреда.
    В. Взаимовыгодное взаимодействие двух или нескольких особей.
    Г. Взаимодействие двух или нескольких особей, при котором одни предоставляют убежища другим, и это не приносит хозяину ни вреда, ни пользы.
    Д. Совместное обитание двух особей, непосредственно не взаимодействующих между собой.
    Е. Взаимодействие двух или нескольких особей, имеющих сходные потребности в одних и тех же ограниченных ресурсах, что приводит к снижению жизненных показателей взаимодействующих особей.
    Ж. Взаимодействие двух или нескольких организмов, при котором одни питаются живыми тканями или клетками других и получают от них место постоянного или временного обитания.
    З. Взаимодействие двух или нескольких особей, при котором одни поедают других.

    (Ответ: 1 – В; 2 – Д; 3 – Е; 4 – А; 5 – Г; 6 – Б; 7 – Ж; 8 – З.)

    7. Как вы думаете, для чего прогрессивные технологии посадки деревьев в бедную почву предполагают заражение грунта определенными видами грибов?
    (Ответ: между этими грибами и деревом формируются симбиотические отношения. Грибы быстро образуют очень разветвленную грибницу и оплетают своими гифами корни деревьев. Благодаря этому растение получает воду и минеральные соли с огромной площади поверхности почвы. Чтобы достичь такого эффекта без грибницы, дереву пришлось бы потратить много времени, вещества и энергии на формирование столь разветвленной корневой системы. При посадке на новое место симбиоз с грибом значительно повышает шансы дерева благополучно прижиться.)

    8.* Назовите организмы, являющиеся симбионтами человека. Какую роль они выполняют?
    (Ответ: представители бактерий и простейших, обитающих в кишечнике человека. В 1 г содержимого толстой кишки насчитывается 250 млрд микроорганизмов. Многие вещества, поступающие в организм человека с пищей, перевариваются при их активном участии. Без кишечных симбионтов нормальное развитие невозможно. Болезнь, при которой уменьшается количество симбиотических организмов кишечника, называется дисбактериозом. Микроорганизмы живут также в тканях, полостях и на поверхности кожи человека.)

    9.* Взаимоотношения взрослой ели и соседствующего проростка дуба являются примером:

    (Ответ: а.)

    Законы и следствия пищевых отношений

    1. Соотнесите предлагаемые понятия и определения:

    А. Организм, который активно разыскивает и убивает относительно крупные жертвы, способные убегать, прятаться или сопротивляться.
    Б. Организм (имеющий, как правило, небольшие размеры), который использует живые ткани или клетки другого организма в качестве источника питания и среды обитания.
    В. Организм, который поглощает многочисленные пищевые объекты, как правило, растительного происхождения, на поиск которых он не тратит много сил.
    Г. Водное животное, процеживающее через себя воду с многочисленными мелкими организмами, которые служат ему пищей.
    В. Организм, который разыскивает и поедает относительно мелкие, не способные убегать и сопротивляться пищевые объекты.

    (Ответ: 1 – Б; 2 – Г; 3 – А; 4 – Д; 5 – В.)

    2. Объясните, почему в Китае в середине ХХ в. вслед за уничтожением воробьев резко снизился урожай зерновых. Ведь воробьи – зерноядные птицы.
    (Ответ: взрослые воробьи питаются в основном семенами, но птенцы для своего развития нуждаются в белковой пище. Выкармливая потомство, воробьи собирают огромное количество насекомых, в том числе и вредителей зерновых культур. Уничтожение воробьев вызвало вспышки размножения вредителей, что привело к сокращению урожая.)

    Законы конкурентных отношений в природе

    1. Для каждой предложенной пары организмов подберите ресурс (из приведенных ниже), за который они могут конкурировать: ландыш – сосна, полевая мышь – обыкновенная полевка, волк – лисица, окунь – щука, канюк – сова-неясыть, барсук – лисица, рожь – василек синий, саксаул – верблюжья колючка, шмель – пчела.
    Ресурсы: нора, нектар, семена пшеницы, вода, зайцы, свет, мелкая плотва, ионы калия, мелкие грызуны.
    (Ответ: ландыш и сосна – ионы калия; полевая мышь и обыкновенная полевка – семена пшеницы; волк и лисица – зайцы; окунь и щука – мелкая плотва; канюк и неясыть – мелкие грызуны; барсук и лисица – нора; рожь и василек – свет; саксаул и верблюжья колючка – вода; шмель и пчела – нектар.)

    2.* Близкородственные виды часто обитают вместе, хотя принято считать, что между ними существует наиболее сильная конкуренция. Почему в этих случаях не происходит вытеснения одним видом другого?
    (Ответ: 1 – очень часто совместно обитающие близкие виды занимают разные экологические ниши (различаются по составу предпочитаемой пищи, по способу добывания корма, используют различные микроместообитания, активны в разное время суток); 2 – конкуренция может отсутствовать, если ресурс, за который виды соперничают, находится в избытке; 3 – вытеснения не происходит, если численность конкурентно более сильного вида постоянно ограничивается хищником или третьим конкурентом; 4 – в нестабильной среде, в которой условия постоянно меняются, они могут поочередно становиться благоприятными то для одного, то для другого вида.)

    3.* В природе сосна обыкновенная формирует леса на относительно бедных почвах в болотистых или, наоборот, сухих местах. Посаженная руками человека, она прекрасно растет на богатых почвах со средней увлажненностью, но только в том случае, если человек ухаживает за посадками. Объясните, почему так происходит.
    (Ответ: обычно в этих условиях в конкурентной борьбе побеждают другие виды деревьев (в зависимости от условий это могут быть осина, липа, клен, вяз, дуб, ель и др.). Человек же при уходе за посадками ослабляет конкурентную мощь этих видов, проводя прополку, вырубку и т.п.)

    Популяции

    1. Выберите значение, оценивающее показатель плотности населения популяции:

    а) 20 особей;
    б) 20 особей на гектар;
    в) 20 особей на 100 размножающихся самок;
    г) 20%;
    д) 20 особей на 100 ловушек;
    е) 20 особей в год.

    (Ответ: б.)

    2. Выберите значение, оценивающее показатель рождаемости (или смертности) населения популяции:

    а) 100 особей;
    б) 100 особей в год;
    в) 100 особей на гектар;
    г) 100.

    (Ответ: б.)

    3. Зайцы-беляки и зайцы-русаки, обитающие на одной территории, составляют:

    а) одну популяцию одного вида;
    б) две популяции двух видов;
    в) две популяции одного вида;
    г) одну популяцию разных видов.

    (Ответ: б.)

    4. На территории площадью 100 км2 ежегодно производили рубку леса. На момент организации на этой территории заповедника было отмечено 50 лосей. Через 5 лет численность лосей увеличилась до 650 голов. Еще через 10 лет количество лосей уменьшилось до 90 и стабилизировалось в последующие годы на уровне 80–110 голов.
    Определите плотность поголовья лосей: а) на момент создания заповедника; б) через 5 лет после создания заповедника; в) через 15 лет после создания заповедника. Объясните, почему сначала численность лосей резко возросла, а позже упала и стабилизировалась.
    (Ответ: а – 0,5 особи/км2; б – 6,5 особи/км2; в – 0,9 особи/км2. Численность лосей возросла из-за охраны на территории заповедника. Позже численность уменьшилась, так как в заповедниках рубка леса запрещена. Это привело к тому, что через 15 лет мелкие деревья, растущие на старых вырубках, выросли, и кормовая база лосей уменьшилась.)

    5. Охотоведы установили, что весной на площади 20 км2 таежного леса обитало 8 соболей, из которых 4 самки (взрослые соболи не образуют постоянных пар). Ежегодно одна самка в среднем приносит трех детенышей. Средняя смертность соболей (взрослых и детенышей) на конец года составляет 10%. Определите численность соболей в конце года; плотность весной и в конце года; показатель смертности за год; показатель рождаемости за год.
    (Ответ: численность соболей в конце года – 18 особей; плотность весной – 0,4 особи/км2 ; плотность в конце года 0,9 особи/км2; показатель смертности за год – 2 особи (согласно расчетам – 1,8, но реальная величина, естественно, всегда будет выражаться целым числом); показатель рождаемости за год – 12 особей.)

    6.* Является ли популяцией: а) группа гепардов в Московском зоопарке; б) семья волков; в) окуни в озере; г) пшеница на поле; д) улитки одного вида в одном горном ущелье; е) птичий базар; ж) бурые медведи на острове Сахалин; з) стадо (семья) оленей; и) благородные олени в Крыму; к) колония грачей; л) все растения ельника? Ответ обоснуйте.
    (Ответ: да – в, д, ж, и. Популяция – это группа особей одного вида, взаимосвязанных между собой, продолжительное время (несколько поколений) обитающая на одной территории. Популяция – это естественная группировка, которая обладает определенной половой, возрастной, пространственной структурой.)

    7.* Чем объяснить то, что если в борьбе двух (не бойцовых) собак одна подставит незащищенную шею, другая не станет за нее хватать, в то время как в борьбе рыси и собаки такое поведение окажется роковым для подставившей шею собаки?
    (Ответ: агрессия между особями одного вида, как правило, направлена на поддержание иерархической и пространственной структуры популяции, а не на уничтожение соплеменников. Популяция, как и вид, представляет собой единое целое, и благополучие одной особи во многом определяет благополучие популяции, вида. Рысь же попросту съест собаку.)

    8.* В лесу ученые равномерно расставили ловушки на зайцев-беляков. Всего было поймано 50 зверьков. Их пометили и отпустили. Через неделю отлов повторили. Поймали 70 зайцев, из которых 20 были уже с метками. Определите, какова численность зайцев на исследуемой территории, считая, что меченые в первый раз зверьки равномерно распределились по лесу.
    (Ответ: 50 меченых особей должны были распределиться среди общего количества зайцев (Х), обитающих на исследуемой территории. Доля их в повторной выборке должна отражать и их долю в общей численности, т.е. 50 относится к Х как 20 относится к 70.
    Решаем пропорцию:
    50: Х = 20: 70; Х = 70х 50: 20 = 175.
    Таким образом расчетная численность зайцев на исследуемой территории составляет 175 особей.
    Данный метод (индекс Линкольна, или индекс Петерсена) используется для определения численности скрытных животных, которых не удается пересчитать напрямую. Результат расчетов может иметь дробное значение, однако надо помнить, что реальная численность животных всегда выражается целой величиной. Кроме того, данный метод имеет свои погрешности, что тоже надо принимать во внимание. Логичней говорить, например, о численности в 170–180 особей.)

    Демографическая структура популяции

    1. Объясните, почему из популяции кабана, без риска ее уничтожить, можно изъять до 30% особей, тогда как допустимый отстрел лосей не должен превышать 15% численности популяции?
    (Ответ: самка кабана в среднем приносит от 4 до 8 (иногда до 15) поросят, а самка лося – 1–2. Поэтому восстановление поголовья кабанов идет более быстрыми темпами.)

    2. Какие организмы имеют простую, а какие – сложную возрастную структуру популяций?
    (Ответ: простой возрастной структурой популяций отличаются организмы, продолжительность жизненного цикла которых не превышает одного года, а размножение происходит один раз в жизни и приурочено к сезонным изменениям в окружающей среде. Это, например, однолетние растения, ряд видов насекомых и т.п. В противных случаях возрастная структура популяций может быть сложной.)

    3. Объясните, почему значительная весенняя гибель взрослых землероек-бурозубок приведет к резкому и продолжительному спаду численности популяции, в то время как полное уничтожение всех вылетевших весной взрослых майских жуков не приведет к подобному результату.
    (Ответ: популяция бурозубок весной представлена исключительно взрослыми зверьками прошлого года рождения. Майские жуки, чьи личинки развиваются в почве на протяжение 3–4 лет, имеют сложную возрастную структуру популяции. При гибели взрослых особей одной весной на следующий год их заменят жуки, развившиеся из другого поколения личинок.)

    4. Постройте возрастные пирамиды, отражающие возрастной состав населения России (140 млн жителей) и Индонезии (190 млн жителей), используя приведенные данные.

    Продолжение следует

    1 Знаками «*» и «**» отмечены задания повышенной сложности, имеющие познавательный и проблемный характер.

    Жизнь на Земле появилась миллиарды лет назад, и с тех пор живые организмы становились всё сложнее и разнообразнее. Существует множество доказательств того, что всё живое на нашей планете имеет общее происхождение. Хотя механизм эволюции ещё не до конца понятен учёным, сам её факт не подлежит сомнению. В этом посте — о том, какой путь прошло развитие жизни на Земле от самых простейших форм до человека, какими были много миллионов лет назад наши далёкие предки. Итак, от кого же произошёл человек?

    Земля возникла 4,6 миллиардов лет назад из газопылевого облака, окружавшего Солнце. В начальный период существования нашей планеты условия на ней были не очень комфортными — в окружающем космическом пространстве летало ещё много обломков, которые постоянно бомбардировали Землю. Считается, что 4,5 млрд лет назад Земля столкнулась с другой планетой, в результате этого столкновения образовалась Луна. Первоначально Луна была очень близко к Земле, но постепенно отдалялась. Из-за частых столкновений в это время поверхность Земли находилась в расплавленном состоянии, имела очень плотную атмосферу, а температура на поверхности превышала 200°C. Через некоторое время поверхность затвердела, образовалась земная кора, появились первые материки и океаны. Возраст самых древних исследованных горных пород составляет 4 миллиарда лет.

    1) Древнейший предок. Археи.

    Жизнь на Земле появилась, согласно современным представлениям, 3,8-4,1 млрд лет назад (самому раннему из найденных следов бактерий 3,5 млрд лет). Как именно возникла жизнь на Земле, до сих пор надёжно не установлено. Но вероятно, уже 3,5 млрд. лет назад, существовал одноклеточный организм, который имел все черты, присущие всем современным живым организмам и был для всех них общим предком. От этого организма всем его потомкам достались черты строения (все они состоят из клеток, окружённых оболочкой), способ хранения генетического кода (в закрученных двойной спиралью молекулах ДНК), способ хранения энергии (в молекулах АТФ) и т. д. От этого общего предка произошли три основные группы одноклеточных организмов, существующих до сих пор. Сначала разделились между собой бактерии и археи, а затем от архей произошли эукариоты — организмы, клетки которых имеют ядро.

    Археи почти не изменились за миллиарды лет эволюции, вероятно примерно так же выглядели и древнейшие предки человека

    Хотя археи дали начало эволюции, многие из них дожили до наших дней почти в неизменном виде. И это не удивительно — с древних времён археи сохранили способность выживать в самых экстремальных условиях — при отсутствии кислорода и солнечного света, в агрессивных — кислых, солёных и щелочных средах, при высоких (некоторые виды прекрасно чувствуют себя даже в кипятке) и низких температурах, при высоких давлениях, также они способны питаться самыми разными органическими и неорганическими веществами. Их далёкие высокоорганизованные потомки совсем не могут этим похвастаться.

    2) Эукариоты. Жгутиковые.

    Длительное время экстремальные условия на планете мешали развитию сложных форм жизни, и на ней безраздельно господствовали бактерии и археи. Примерно 3 млрд. лет назад на Земле появляются цианобактерии. Они начинают использовать процесс фотосинтеза для поглощения углерода из атмосферы, выделяя при этом кислород. Выделяющийся кислород сначала расходуется на окисление горных пород и железа в океане, а затем начинает накапливаться в атмосфере. 2,4 млрд. лет назад происходит «кислородная катастрофа» — резкое повышение содержание кислорода в атмосфере Земли. Это приводит к большим изменениям. Для многих организмов кислород оказывается вреден, и они вымирают, заменяясь такими, которые наоборот, используют кислород для дыхания. Меняется состав атмосферы и климат, становится значительно холоднее из-за падения содержания парниковых газов, но появляется озоновый слой, защищающий Землю от вредного ультрафиолетового излучения.

    Примерно 1,7 млрд лет назад от архей произошли эукариоты — одноклеточные организмы, клетки которых имели более сложное строение. Их клетки, в частности, содержали ядро. Впрочем, возникшие эукариоты имели не одного предшественника. Например, митохондрии, важные составляющие клеток всех сложных живых организмов, произошли от свободноживущих бактерий, захваченных древними эукариотами.

    Существует много разновидностей одноклеточных эукариот. Считается, что все животные, а значит и человек, произошли от одноклеточных организмов, которые научились передвигаться при помощи жгутика, расположенного сзади клетки. Жгутики также помогают фильтровать воду в поисках пищи.

    Хоанофлагеллаты под микроскопом, как полагают учёные, именно от подобных существ некогда произошли все животные

    Некоторые виды жгутиковых живут, объединяясь в колонии, считается, что из таких колоний простейших жгутиковых некогда произошли первые многоклеточные животные.

    3) Развитие многоклеточных. Билатерии.

    Примерно 1,2 млрд. лет назад появляются первые многоклеточные организмы. Но эволюция всё ещё медленно продвигается, вдобавок развитию жизни мешают . Так, 850 млн. лет назад начинается глобальное оледенение. Планета более чем на 200 млн. лет покрывается льдом и снегом.

    Точные детали эволюции многоклеточных, к сожалению, неизвестны. Но известно, что через некоторое время первые многоклеточные животные разделились на группы. Дожившие до наших дней без особых изменений губки и пластинчатые не имеют отдельных органов и тканей и отфильтровывают питательные вещества из воды. Ненамного сложнее устроены кишечнополостные, имеющие лишь одну полость и примитивную нервную систему. Все же остальные более развитые животные, от червей до млекопитающих, относятся к группе билатерий, и их отличительным признаком является двусторонняя симметрия тела. Когда появились первые билатерии, доподлинно неизвестно, вероятно это произошло вскоре после окончания глобального оледенения. Формирование двусторонней симметрии и появление первых групп билатеральных животных, вероятно, происходило между 620 и 545 млн. лет назад. Находки ископаемых отпечатков первых билатерий относятся ко времени 558 млн. лет назад.

    Кимберелла (отпечаток, внешний вид) — один из первых обнаруженных видов билатерий

    Вскоре после своего возникновения билатерии разделяются на первичноротых и вторичноротых. От первичноротых происходят почти все беспозвоночные животные — черви, моллюски, членистоногие и т. д. Эволюция вторичноротых приводит к появлению иглокожих (таких, как морские ежи и звёзды), полухордовых и хордовых (к которым относится и человек).

    Недавно в Китае были найдены остатки существ, получивших название Saccorhytus coronarius. Они жили примерно 540 млн. лет назад. По всем признакам это маленькое (размером всего около 1 мм) существо было предком всех вторичноротых животных, а значит, и человека.

    Saccorhytus coronarius

    4) Появление хордовых. Первые рыбы.

    540 млн. лет назад происходит «кембрийский взрыв» — за очень короткий период времени появляется огромное число самых разных видов морских животных. Фауну этого периода удалось хорошо изучить благодаря сланцам Бёрджес в Канаде, где сохранились остатки огромного числа организмов этого периода.

    Некоторые из животных кембрийского периода, останки которых найдены в сланцах Бёрджес

    В сланцах нашли множество удивительных животных, к сожалению, давно вымерших. Но одной из наиболее интересных находок стало обнаружение останков небольшого животного, получившего название пикайя. Это животное — самый ранний из найденных представителей типа хордовых.

    Пикайя (останки, рисунок)

    У пикайи были жабры, простейший кишечник и кровеносная система, а также небольшие шупальца возле рта. Это небольшое, размером около 4 см. животное напоминает современных ланцетников.

    Появление рыб не заставило себя долго ждать. Первым из найденных животных, которое можно отнести к рыбам, считается хайкоуихтис. Он был ещё меньше пикайи (всего 2,5 см), но у него уже были глаза и головной мозг.

    Примерно так выглядел хайкоуихтис

    Пикайя и хайкоуихтис появились между 540 и 530 млн. лет назад.

    Вслед за ними в морях вскоре появилось множество рыб большего размера.

    Первые ископаемые рыбы

    5) Эволюция рыб. Панцирные и первые костные рыбы.

    Эволюция рыб продолжалась довольно долго, и поначалу они совсем не были доминирующей группой живых существ в морях, как сегодня. Напротив, им приходилось спасаться от таких крупных хищников, как ракоскорпионы. Появились рыбы, у которых голова и часть туловища были защищены панцирем (считается, что череп впоследствии развился из такого панциря).

    Первые рыбы были бесчелюстными, вероятно, они питались мелкими организмами и органическими остатками, втягивая и фильтруя воду. Лишь около 430 млн. лет назад появились первые рыбы, имеющие челюсти — плакодермы, или панцирные рыбы. Голова и часть туловища у них была прикрыта костным панцирем, обтянутым кожей.

    Древняя панцирная рыба

    Некоторые из панцирных рыб приобрели большие размеры и стали вести хищный образ жизни, но дальнейший шаг в эволюции был сделан благодаря появлению костных рыб. Предположительно, от панцирных рыб произошёл общий предок хрящевых и костных рыб, населяющих современные моря, а сами панцирные рыбы, появившиеся примерно в одно с ними время акантоды, а также почти все бесчелюстные рыбы впоследствии вымерли.

    Entelognathus primordialis — вероятная промежуточная форма между панцирными и костными рыбами, жил 419 млн. лет назад

    Самой первой из обнаруженных костных рыб, а значит, и предком всех сухопутных позвоночных, включая человека, считается живший 415 млн. лет назад Guiyu Oneiros. По сравнению с хищными панцирными рыбами, достигавшими в длину 10 м, эта рыба была небольшой — всего 33 см.

    Guiyu Oneiros

    6) Рыбы выходят на сушу.

    Пока рыбы продолжали эволюционировать в море, растения и животные других классов уже выбрались на сушу (следы присутствия на ней лишайников и членистоногих обнаруживаются ещё 480 млн. лет назад). Но в конце концов освоением суши занялись и рыбы. От первых костных рыб произошли два класса — лучепёрые и лопастопёрые. К лучепёрым относится большинство современных рыб, и они прекрасно приспособлены для жизни в воде. Лопастепёрые, напротив, приспособились к жизни на мелководье и в небольших пресных водоёмах, в результате чего их плавники удлинились, а плавательный пузырь постепенно превратился в примитивные лёгкие. В результате эти рыбы научились дышать воздухом и ползать по суше.

    Эвстеноптерон () — одна из ископаемых кистепёрых рыб, которая считается предком сухопутных позвоночных. Эти рыбы жили 385 млн. лет назад и достигали длины 1,8 м.

    Eusthenopteron (реконструкция)

    — ещё одна кистепёрая рыба, которая считается вероятной промежуточной формой эволюции рыб в земноводных. Она уже могла дышать лёгкими и выползать на сушу.

    Panderichthys (реконструкция)

    Тиктаалик, найденные останки которого относятся ко времени 375 млн. лет назад, был ещё ближе к земноводным. У него были рёбра и лёгкие, он мог вертеть головой отдельно от туловища.

    Тиктаалик (реконструкция)

    Одними из первых животных, которых причисляют уже не к рыбам, а к земноводным, стали ихтиостеги. Они жили около 365 млн. лет назад. Эти небольшие животные длиной около метра, хотя уже и имели лапы вместо плавников, всё ещё с трудом могли передвигаться по суше и вели полуводный образ жизни.

    Ихтиостега (реконструкция)

    На время выхода позвоночных на сушу пришлось очередное массовое вымирание — девонское. Оно началось примерно 374 млн. лет назад, и привело к вымиранию почти всех бесчелюстных рыб, панцирных рыб, многих кораллов и других групп живых организмов. Тем не менее первые земноводные выжили, хотя им и понадобился ещё не один миллион лет, чтобы более-менее адаптироваться к жизни на суше.

    7) Первые рептилии. Синапсиды.

    Начавшийся примерно 360 млн. лет назад и продолжавшийся 60 млн. лет каменноугольный период был очень благоприятен для земноводных. Значительную часть суши покрывали болота, климат был тёплым и влажным. В таких условиях многие земноводные продолжали жить в воде или около неё. Но примерно 340-330 млн. лет назад некоторые из земноводных решили освоить и более сухие места. У них развились более сильные конечности, появились более развитые лёгкие, кожа, наоборот стала сухой, чтобы не терять влагу. Но чтобы действительно длительное время жить далеко от воды, нужно было ещё одно важное изменение, ведь земноводные, как и рыбы, метали икру, и их потомство должно было развиваться в водной среде. И около 330 млн. лет назад появились первые амниоты, т. е. животные, способные откладывать яйца. Оболочка первых яиц была ещё мягкой, а не твёрдой, тем не менее, их уже можно было откладывать на суше, а значит, потомство уже могло появляться вне водоёма, минуя стадию головастиков.

    Учёные до сих пор путаются в классификации земноводных каменноугольного периода, а также в том, считать ли некоторые ископаемые виды уже ранними рептилиями, либо всё ещё земноводными, приобретшими лишь некоторые черты рептилий. Так или иначе, эти то ли первые рептилии, то ли рептилоподобные земноводные выглядели примерно так:

    Вестлотиана — небольшое животное длиной около 20 см., сочетавшее черты рептилий и земноводных. Жило примерно 338 млн. лет назад.

    А затем ранние рептилии разделились, дав начало трём большим группам животных. Палеонтологи выделяют эти группы по строению черепа — по числу отверстий, через которые могут проходить мышцы. На рисунке сверху вниз черепа анапсида , синапсида и диапсида :

    При этом анапсидов и диапсидов часто объединяют в группу завропсидов . Казалось бы, отличие совершенно незначительное, тем не менее, дальнейшая эволюция этих групп пошла совершенно разными путями.

    От завропсидов произошли более продвинутые рептилии, включая динозавров, а затем птицы. Синапсиды же дали начало ветви звероподобных ящеров, а затем и млекопитающим.

    300 млн. лет назад начался Пермский период. Климат стал более сухим и холодным и на суше стали доминировать ранние синапсиды — пеликозавры . Одним из пеликозавров был Диметродон, имевший в длину до 4х метров. На спине у него был большой «парус», который помогал регулировать температуру тела: быстро охладиться при перегреве или, наоборот, быстро согреться, подставив спину солнцу.

    Считается, что огромный диметродон является предком всех млекопитающих, а значит, и человека.

    8) Цинодонты. Первые млекопитающие.

    В середине Пермского периода от пеликозавров происходят терапсиды, больше уже похожие на зверей, чем на ящеров. Выглядели терапсиды примерно так:

    Типичный терапсид Пермского периода

    В течение Пермского периода возникло много видов терапсид, больших и маленьких. Но 250 млн. лет назад происходит мощный катаклизм. Из-за резкого усиления вулканической активности температура повышается, климат становится очень сухим и жарким, большие площади суши заливает лава, а атмосферу наполняют вредные вулканические газы. Происходит Великое Пермское вымирание, самое масштабное в истории Земли массовое вымирание видов, вымирают до 95% морских и около 70% сухопутных видов. Из всех терапсид выживает лишь одна группа — цинодонты .

    Цинодонты были животными преимущественно небольшого размера, от нескольких сантиметров до 1-2 метров. Среди них были как хищники, так и травоядные.

    Циногнат — вид хищных цинодонтов, живших около 240 млн. лет назад. Был в длину около 1.2 метра, один из возможных предков млекопитающих.

    Однако, после того, как климат наладился, цинодонтам было не суждено захватить планету. Диапсиды перехватили инициативу — от мелких рептилий произошли динозавры, которые вскоре заняли большинство экологических ниш. Цинодонты не могли с ними тягаться, они измельчали, им пришлось прятаться в норах и выжидать. Реванш удалось взять нескоро.

    Однако цинодонты выживали, как могли, и продолжали эволюционировать, всё больше становясь похожими на млекопитающих:

    Эволюция цинодонтов

    Наконец, от цинодонтов произошли первые млекопитающие. Они были маленькими и вели, предположительно, ночной образ жизни. Опасное существование среди большого количества хищников способствовало сильному развитию всех органов чувств.

    Одним из первых настоящих млекопитающих считается Мегазостродон.

    Мегазостродон жил примерно 200 млн. лет назад. Его длина была всего около 10 см. Мегазостродон питался насекомыми, червями и другими мелкими животными. Вероятно, он или другой похожий зверёк и был предком всех современных млекопитающих.

    Дальнейшую эволюцию — от первых млекопитающих до человека — мы рассмотрим в .

    Тип простейшие включает примерно 25 тыс. видов одноклеточных животных, обитающих в воде, почве или организмах других животных и человека. Имея морфологическое сходство в строении клеток с многоклеточными организмами, простейшие существенно отличаются от них в функциональном отношении.

    Если клетки многоклеточного животного выполняют специальные функции, то клетка простейшего является самостоятельным организмом, способным к обмену веществ, раздражимости, движению и размножению.

    Простейшие - это организмы на клеточном уровне организации. В морфологическом отношении простейшее равноценно клетке, но в физиологическом представляет собой целый самостоятельный организм. Подавляющее большинство их - микроскопически малых размеров (от 2 до 150 мкм). Однако некоторые из ныне живущих простейших достигают 1см, а раковины ряда ископаемых корненожек имеют в диаметре до 5-6 см. Общее количество известных видов превышает 25 тыс.

    Строение простейших чрезвычайно разнообразно, но все они обладают чертами, характерными для организации и функции клетки. Общим в строении в строении простейших являются два основных компонента тела - цитоплазма и ядро.

    Цитаплазма

    Цитоплазма ограничена наружной мембраной, которая регулирует поступление веществ в клетку. У многих простейших она усложняется дополнительными структурами, увеличивающими толщину и механическую прочность наружного слоя. Таким образом возникают образования типа пелликулы и оболочки.

    Цитоплазма простейших обычно распадается на 2 слоя - наружный более светлый и плотный - эктоплазму и внутренний, снабженный многочисленными включениями,- эндоплазму.

    В цитоплазме локализуются общеклеточные органоиды. Кроме того, в цитоплазме многих простейших могут присутствовать разнообразные специальные органеллы. Особенно широко распространены различные фибриллярные образования - опорные и сократимые волоконца, сократительные вакуоли, пищеварительные вакуоли и др.

    Ядро

    Простейшие обладают типичным клеточным ядром, одним или несколькими. Ядро простейших имеет типичную двухслойную ядерную оболочку. В ядре распределен хроматиновый материал и ядрышки. Ядра простейших характеризуются исключительным морфологическим многообразием по размерам, числу ядрышек, количеству ядерного сока и т.д.

    Особенности жизнедеятельности простейших

    В отличие от соматических клеток многоклеточные простейшие характеризуются наличием жизненного цикла. Он слагается из ряда следующих друг за другом стадий, которые в существовании каждого вида повторяются с определенной закономерностью.

    Чаще всего цикл начинается стадией зиготы, отвечающей оплодотворенному яйцу многоклеточных. За этой стадией следует однократно или многократно повторяющееся бесполое размножение, осуществляемое путем клеточного деления. Затем образуются половые клетки (гаметы), попарное слияние которых вновь дает зиготу.

    Важной биологической особенностью многих простейших является способность к инцистированию. При этом животные округляются, сбрасывают или втягивают органеллы движения, выделяют на своей поверхности плотную оболочку и впадают в состояние покоя. В инцистированном состоянии простейшие могут переносить резкие изменения окружающей среды, сохраняя жизнеспособность. При возвращении благоприятных для жизни условий цисты раскрываются и простейшие выходят из них в виде активных, подвижных особей.

    По строению органоидов движения и особенностей размножения тип простейшие делится на 6 классов. Основные 4 класса: Саркодовые, Жгутиковые, Споровики и Инфузории.

    В любой трофической цепи не вся пища используется на рост особи, т.е. на накопление ее биомассы. Часть ее расходуется на удовлетворение энергетических затрат организма (дыхание, движение, размножение, поддержание температуры тела).

    При этом биомасса одного звена не может быть полностью переработана последующим, и в каждом последующем звене трофической цепи происходит уменьшение биомассы.

    В среднем считается, что лишь порядка 10% биомассы и связанной в ней энергии переходит с каждого трофического уровня на следующий, т.е. продукция организмов каждого последующего трофического уровня всегда меньше в среднем в 10 раз продукции предыдущего уровня.

    Так, например, в среднем из 1000 кг растений образуется 100 кг биомассы растительноядных животных (консументов первого порядка). Плотоядные животные (консументы второго порядка), поедающие растительноядных, могут синтезировать из этого количества 10 кг своей биомассы, а хищники (консументы третьего порядка), которые питаются плотоядными животными, синтезируют только 1 кг своей биомассы.

    Таким образом, суммарная биомасса, заключенная в ней энергия, а также численность особей прогрессивно уменьшаются по мере восхождения по трофическим уровням.

    Эта закономерность получила название правила экологической пирамиды.

    Данное явление впервые было изучено Ч.Элтоном (1927 г.) и названо им пирамидой чисел или пирамидой Элтона.

    Экологическая пирамида - это графическое изображение соотношения между продуцентами и консументами разных порядков, выраженное в единицах биомассы(пирамида биомасс), числа особей (пирамида численности) или заключенной в массе живого вещества энергии (пирамида энергии) (рис.6).

    Рис.6. Схема экологической пирамиды.

    Экологическая пирамида выражает трофическую структуру экосистем в геометрической форме.

    Различают три основных типа экологических пирамид: пирамида чисел (численности), пирамида биомассы и пирамиды энергии.

    1) пирамиды чисел , основанные на подсчете организмов каждого трофического уровня; 2) пирамиды биомассы , в которых используется суммарная масса (обычно сухая) организмов на каждом трофическом уровне; 3) пирамиды энергии , учитывающие энергоемкость организмов каждого трофического уровня.

    Пирамиды энергии считаются самыми важными, поскольку они непосредственно обращаются к основе пищевых отношений - потоку энергии, необходимой для жизнедеятельности любых организмов.

    Пирамида чисел (численности)

    Пирамида чисел (численности) или пирамида Элтона отражает численность отдельных организмов на каждом трофическом уровне.

    Пирамида численности представляет собой наиболее простое приближение к изучению трофической структуры экосистемы.

    При этом сначала подсчитывают число организмов на данной территории, сгруппировав их по трофическим уровням и представив в виде прямоугольника, длина (или площадь) которого пропорциональна числу организмов, обитающих на данной площади (или в данном объеме, если это водная экосистема).

    Пирамида численности может иметь правильную форму, т.е. суживаться кверху (правильная или прямая), а может быть и перевернутой вершиной вниз (перевернутая или обращенная) рис.7.

    правильная (прямая) перевернутая (обращенная)

    (пруд, озеро, луг, степь, пастбище и др.) (лес умеренного пояса летом и др.)

    Рис.7. Пирамида численности (1 – правильная; 2- перевернутая)

    Пирамида численности имеет правильную форму, т.е. сужается при продвижении от уровня продуцентов к более высоким трофическим уровням, для водных экосистем (пруд, озеро и др.) и наземных экосистем (луг, степь, пастбище и др.).

    Например:

      тысяча особей фитопланктона в небольшом пруду может прокормить 100 особей мелких ракообразных – консументов первого порядка, которые в свою очередь прокормят 10 особей рыб – консументов второго порядка, которых будет достаточно, чтобы прокормиться 1 окуню – консументу третьего порядка.

    Пирамида численности для некоторых экосистем, например для леса умеренного пояса, имеет перевернутую форму.

    Например:

      в лесу умеренного пояса летом небольшое количество больших деревьев - продуцентов снабжает пищей огромное количество небольших по размеру насекомых-фитофагов и птиц - консументов первого порядка.

    Однако в экологии пирамида численности употребляется редко, так как из-за большого числа особей на каждом трофическом уровне очень трудно отобразить структуру биоценоза в одном масштабе.

    Пирамида биомассы

    Пирамида биомассы отражает более полно пищевые взаимоотношения в экосистеме, так как в ней учитывается суммарная масса организмов (биомасса) каждого трофического уровня.

    Прямоугольники в пирамидах биомассы отображают массу организмов каждого трофического уровня, отнесенную к единице площади или объема.

    Пирамиды биомассы, так же, как и пирамиды численности, могут быть не только правильной формы, но и перевернутыми (обращенными) рис.8.

    Консументы 3 порядка

    Консументы 2 порядка

    Консументы 1 порядка

    Продуценты

    правильная (прямая) перевернутая (обращенная)

    (наземные экосистемы: (водные экосистемы: озеро,

    луг, поле и др.) пруд и особенно морские

    экосистемы)

    Рис.7. Пирамида биомасс (1 – правильная; 2- перевернутая)

    Для большинства наземных экосистем (луг, поле и др.) суммарная биомасса каждого последующего трофического уровня пищевой цепи уменьшается.

    Это создает пирамиду биомасс, где существенно преобладают продуценты, а над ними располагаются постепенно уменьшающиеся трофические уровни консументов, т.е. пирамида биомасс имеет правильную форму.

    Например:

      в среднем из 1000 кг растений образуется 100 кг тела растительноядных животных – консументов первого порядка (фитофагов). Плотоядные животные – консументы второго порядка, поедающие растительноядных, могут синтезировать из этого количества 10 кг своей биомассы. А хищники – консументы третьего порядка, питающиеся плотоядными животными, синтезируют только 1 кг своей биомассы.

    В водных экосистемах (озеро, пруд и др.) пирамида биомасс может быть перевернутой, где биомасса консументов преобладает над биомассой продуцентов.

    Это объясняется тем, что в водных экосистемах продуцентом является микроскопический фитопланктон, быстро растущий и размножающийся), который в достаточном количестве непрерывно поставляет живую пищу консументам, намного медленно растущим и размножающимся. Зоопланктон (или другие животные, питающиеся фитопланктоном) накапливают биомассу годами и десятилетиями, тогда как фитопланктон имеет крайне короткий период жизни (несколько дней или часов).