• Живая полимеризация. Блок-сополимеры

    Если акту внедрения мономера в растущую полимерную цепь предшествует акт его координации на активном центре, то такой процесс называют ионно-координационной полимеризацией . Координация мономера может иметь место как при анионной, так и при катионной полимеризации, но для анионной полимеризации она более характерна.

    В 1954 году А.А.Коротков получил из изопрена стереорегулярный каучук, применив в качестве катализатора литийорганические соединения. При полимеризации на литии или литийорганических соединениях стереорегулярный цис-1,4-полиизопрен образуется лишь в углеводородных средах. Это объясняется координацией мономера на полярном, но недиссоциированном активном центре , в результате чего мономерное звено принимает конфигурацию, соответствующуюцис -1,4-структуре:

    Добавление всего лишь нескольких процентов электронодонорного соединения (эфира, тетрагидрофурана, алкиламина) резко меняет микроструктуру полиизопрена, становится преобладающей транс -1,4- (80-90%) и 3,4-структура (10-20%). Электронодонорное соединение поляризует связь до разделения на ионы:

    

    В этом случае происходит координация иона Li + с концевым звеном макроиона, которое имеет аллильную структуру. В аллильной структуре -электроны делокализованы. С учетом этого координацию иона Li + с макроионом можно представить циклической структурой:

    что приводит к транс -1,4- и 3,4-структуре.

    В 1955 году немецкий химик Карл Циглер (для получения полиэтилена в мягких условиях 50-80С и 1 МПа) и итальянский химик Джулио Натта (для получения кристаллизующихся полипропилена и полистирола) предложили каталитическую систему из триэтилалюминия и хлорида титана.

    В частности Натта с сотрудниками в Милане исследовал методом дифракции рентгеновских лучей полимеры, полученные пропилена, и обнаружил, что некоторые изученные полимеры, полученные полимеризацией мономера под действием прдуктов реакции триалкилалюминия с хлоридом титана (катализатор Циглера) или под действием трехокиси хрома, нанесенной на окись алюминия, имеют значительно более регулярную структуру, чем другие полимеры полипропилена. Стереорегулярность полимера сильно влияет на его физические свойства. Например, обычный атактический полипропилен - мягкий резиноподобный материал, тогда как изотактическая модификация представляет волокнистый материал, который можно прясть и ткать. Поэтому не удивительно, что Натта и Циглер получили Нобелевскую премию в 1963 году за открытие стереорегулярных полимеров и катализаторов, необходимых для их получения.

    Типичными катализаторами ионо-координационнной полимеризации являются соединения переходных металлов d-групп (IV-VIII группы - Ti, V, Cr), образующие при взаимодействии с алюминийалкилом (или другими органическими соединениями непереходных металлов I-III групп) -связь (I) Ме-С, но сохраняющие способность к образованию -связи (II) - так называемые группа катализаторов Циглера-Натта:

    В акте координации мономер выступает в роли донора -электронов, а переходный металл катализатора Ti, благодаря наличию вакантных d-орбиталей, является акцептором (II). Образование -комплекса мономер-Ti приводит к ослаблению связи Ti-C, внедрение мономера по этой связи облегчается (III).

    Рост цепи осуществляется путем внедрения мономера по типу “голова к хвосту”, что связано с преодолением относительно низких активационных барьеров, чем при присоединению по другим типам. Акт координации приводит к определенной ориентации молекулы мономера, обеспечивая раскрытие двойной связи и отбор строго определенной конформации мономера при внедрении в полимерную цепь. В этом случае полимерная цепь будет иметь стереорегулярную изотактическую структуру. Если отбираемые в акте внедрения конформации мономера противоположны и чередуются регулярно, то образуется стереорегулярная синдиотактическая последовательность. Известны гетерогенные и гомогенные катализаторы Циглера-Натта, на первых в основном получаются изотактические, а на вторых могут быть получены и синдиотактические полимеры.

    Стереоспецифичность каталитических систем типа Циглера-Натта обусловлена влиянием лигандного окружения в координационной сфере переходного металла, тогда как в реакциях радикальной и ионной полимеризации стереорегулирование осуществляется концевым звеном растущей макроцепи. Таким образом, инициирование стереоспецифической полимеризации протекает по трехстадийному механизму - координации, ориентации и внедрения.

    Катализаторы Циглера-Натта широко используются для полимеризации этилена, пропилена, диенов и некоторых полярных и гетероциклических мономеров. В этих процессах интенсивность реакций ограничения роста цепи зависит от температуры. Обрыв цепи происходит в результате тех же реакций, что и при анионной полимеризации, в частности реакции переноса гидрид-иона на мономер или противоион. Кроме того молекулярную массу образующегося полимера можно регулировать также введением в реакционную среду агентов передачи цепи - водорода и алюминийгидрида .

    Скорость роста цепи может быть выражена кинетическим уравнением, похожим на подобное для анионной полимеризации:

    где [I] и [M] - концентрации инициатора и мономера, а  и  -порядки реакции по инициатору и мономеру.

    В промышленности методом анионно-координационной полимеризации получают стереорегулярные каучуки и полиолефины .

    12. Сополимеризация. Вывод кинетических закономерностей реакции радикальной сополимеризации двух различных мономеров. Значение констант сополимеризации и соответствующая им зависимость мол. доли мономера в полученном полимере.

    Сополимеризацией называют совместную полимеризацию двух или более мономеров. Она широко используется в практике, поскольку является простым и очень эффективным методом модификации свойств полимеров. Сополимеризация может быть как радикальной, так и ионной.

    Наиболее распространена и изучена бинарная сополимеризация. Для этого случая можно вывести кинетически (или статистически) без конкретизации механизма и природы активных центров уравнение состава сополимера - зависимость между составами сополимера и исходной смеси мономеров (т.к. как правило они не равны).

    Допущения:

    Постоянная скорость инициирования;

    Реакционная способность активного центра постоянна;

    Все стадии необратимы;

    Мономер расходуется только на рост цепи;

    Существует стационарное состояние;

    Гомофазная полимеризация;

    Сополимер получается с М n  10 4 .

    Степень конверсии мономеров < 5%, когда состав мономерной смеси мало отличается от исходной.

    В этом случае можно записать четыре реакции роста цепи:

    Скорости исчерпания мономеров при сополимеризации равны:

    Поделив эти выражения, получаем отношения концентраций мономерных звеньев в образующемся сополимере:

    В стационарном состоянии устанавливаются стационарные концентрации активных центров каждого типа. Условием этого вида стационарности является:

    .

    Подставив это значение в выражение отношений концентраций мономерных звеньев, после упрощения получим дифференциальное уравнение состава сополимера Майо-Льюиса ::

    ,

    где и-константы сополимеризации , или относительные активности мономеров , равные отношению констант скоростей присоединения к радикалам роста своего и “чужого” мономеров. Параметры для любой пары мономеров определяются только природой этих мономеров и температурой и не зависят от растворителя, инициатора и агента передачи цепи.

    Это уравнение связывает мгновенные (текущие) концентрации мономеров в сополимере и мономерной смеси через величины относительных активностей мономеров.

    По уравнению можно найти константы r 1 и r 2 при сополимеризации до 5-7% глубины превращения мономеров. При этом условии отношение / можно считать равным заданному, а мгновенный состав - равным среднему составу сополимера, образованного на начальной стадии, т.е.

    .

    Таким образом химический состав сополимера (при малых степенях превращения) зависит от концентраций мономеров и их констант сополимеризации.

    Вместо абсолютных молярных концентраций удобнее применять относительные молярные доли.

    Уравнение состава может быть решено графически или аналитически. Существует ряд методов решения уравнения.

    Графическим выражением уравнения состава являются кривые состава сополимера , вид которых определяется константами r 1 и r 2:

    Константы

    Распределение звеньев

    идеальная сополимеризация

    состав сополимера равен составу мономерной смеси, распределение звеньев в цепи сополимера статистическое

    r 1 > 1 и r 2 < 1

    (также кривая 4)

    сополимер обогащен более активным мономером во всей области состава, распределение звеньев в цепи статистическое

    r 1 < 1 и r 2 < 1

    азеотропная сополимеризация при М 1 =0.5

    характерно чередование мономерных звеньев, но оно не регулярное. Активные центры охотнее присоединяют “чужие” мономеры

    r 1 < 1 и r 2 > 1

    см. кривую 2

    r 1  0 и r 2  0

    условие r 1 = 0 означает,

    что k 11 =0 или k 12 >>k 11

    строгое чередование мономерных звеньев, при любом составе мономерной смеси образуется сополимер состава 1:1

    (случай для мономеров не дающих гомополимеров, но образующих сополимеры)

    r 1  0 и r 2 < 1

    см. кривую 3

    r 1  0 и r 2 > 1

    r 1 > 1 и r 2 > 1

    (кривая зеркальна кривой 3)

    протекает раздельная гомополимеризация мономеров без образования сополимера, в крайнем случай блок-сополимеризация

    Статистический анализ чередования звеньев в цепи сополимера указывает на три случая:

    при r 1 r 2 =1 звенья обоих типов размещаются в полимерной цепи по закону случая;

    при r 1 r 2 < 1 вероятность чередования звеньев увеличивается;

    при r 1 r 2  0 в пределе можно регулярно чередующийся сополимер.

    Точка пересечения кривой 3 (или кривой 8) с прямой 1 соответствует азеотропной сополимеризации (когда состав сополимера равен составу мономерной смеси).

    13. Технологические приемы осуществления процессов синтеза полимеров. Полимеризация в массе, растворе, эмульсионная полимеризация и полимеризация в суспензии. Полимеризация в твердой фазе, полимеризация в газовой фазе. Преимущества и недостатки этих способов.

    СПОСОБЫ ПРОВЕДЕНИЯ РАДИКАЛЬНОЙ ПОЛИМЕРИЗАЦИИ

    Радикальную полимеризацию проводят в основном в блоке (массе), растворе, эмульсии, суспензии и газовой фазе При этом процесс может протекать в гомогенных или гетерогенных условиях. Кроме того, фазовое состояние исходной реакционной смеси может также меняться в ходе полимеризации.

    Полимеризация в блоке (в массе ) проводится в отсутствие растворителя, благодаря чему не происходит загрязнения полимера. Однако процесс трудно поддается регулированию вследствие высокой экзотермичности полимеризации. По мере полимеризации увеличивается вязкость среды и затрудняется отвод тепла, вследствие чего возникают местные перегревы, приводящие к деструкции полимера, неоднородности его по молекулярной массе. Достоинствами полимеризации в массе является возможность получения полимера в форме сосуда, в котором проводится процесс без какой-либо дополнительной обработки.

    Полимеризация в растворе лишена многих недостатков блочной полимеризации. При ее проведении устраняется возможность местных перегревов, поскольку теплота реакции легко снимается растворителем, выполняющим также роль разбавителя, уменьшается вязкость реакционной системы, что облегчает ее перемешивание. Однако данный способ полимеризации имеет и недостатки. При проведении полимеризации в ряде растворителей возрастает доля реакций передачи цепи, что приводит к уменьшению молекулярной массы полимера. Кроме того, полимер может быть загрязнен остатками растворителя, который не всегда легко удаляется из полимера.

    Полимеризацию в растворе проводят двумя способами По первому способу для полимеризации применяют растворитель, в котором растворяется и мономер, и полимер. Получаемый раствор используют как таковой или выделяют полимер осаждением либо испарением растворителя. По втором способу полимеризацию в растворе проводят в жидкости, в которой растворяется мономер, но не растворяется полимер. Полимер по мере образования выпадает в твердом виде и быть отделен фильтрованием.

    Полимеризация в суспензии (бисерная или гранульная) широко используется для синтеза различных полимеров. При этом мономер диспергируют в воде в виде мелких капелек. Устойчивость дисперсии достигается механическим перемешиванием и введением в реакционную систему специальных добавок - стабилизаторов. При полимеризации в суспензии применяют растворимые в мономере инициаторы. Процесс полимеризации осуществляется в каплях мономера, которые можно рассматривать как микрореакторы блочной полимеризации. Достоинством этого способа является хороший отвод тепла, а недостатком - возможность загрязнения полимера остатками стабилизатора.

    Полимеризация в эмульсии (латексная полимеризация, латекс - это водная коллоидная дисперсия полимерных частиц размером 10 -4 -10 -5 см) также является широко распространенным способом получения полимеров. При эмульсионной полимеризации в качестве дисперсионной среды обычно используют воду, в качестве эмульгатора - различные мыла. Для инициирования процесса чаше всего применяют водорастворимые инициаторы, окислительно-восстановительные системы. Полимеризация может протекать в молекулярном растворе мономера в воде, на поверхности раздела капля мономера-вода, на поверхности или внутри мицелл мыла, на поверхности или внутри образующихся полимерных частиц, набухших в мономере.

    Достоинством эмульсионной полимеризации являет возможность осуществления процесса с большими скоростями с образованием полимера высокой молекулярной массы, а также легкость теплоотвода; недостатками эмульсионной полимеризации являются необходимость удаления остатков эмульгаторов и большое количество сточных вод, требующих специальной очистки.

    При газофазной полимеризации мономер (например, этилен) находится в газообразном состоянии. В качестве инициаторов могут использоваться кислород и пероксиды. Процесс протекает при высоком давлении.

    Твердофазная полимеризация - это полимеризация мономеров, находящихся в кристаллическом или стеклообразном состоянии. При этом молекулы мономера жестко фиксированы в пространстве и подвижность их крайне ограничена, что определяет особенности кинетики процесса и структуру образующихся макромолекул. Для инициирования полимеризации используют ускоренные электроны или -излучение.

    Существует два крайних случая перехода мономерного кристалла в полимер (возможно множество промежуточных случаев):

    Структура мономерного кристалла существенно определяет структуру полимера, т.н. топотактический процесс (например, полимеризация сопряженных диацетиленов или триоксана )

    (Другой пример топотактической полимеризации - радиационно-химическая полимеризация 2,3-диметилбутадиена-1,3 в гексагональных кристаллах мочевины, в которых образуются каналы, заполненные линейными последовательностями мономеров, причем полимер получается стереорегулярным.);

    Полимер возникает как самостоятельная фаза в протяженных дефектах кристаллической решетки мономера, что приводит к дальнейшей ломке мономерного кристалла; образующаяся полимерная фаза аморфна (например, полимеризация акриламида ).

    14. Поликонденсация и полимераналогичные превращения полимеров. Общие характеристики этих процессов. Основные химические реакции для осуществления данных способов получения ВМС. Кинетика процессов. Основные типы полимеров получаемых в промышленности по этим двум методам.

    Поликонденсация - это синтез полимеров взаимодействием би- или полифункциональных мономеров или олигомеров, обычно сопровождающийся выделением низкомолекулярного продукта (воды, спирта, аммиака, галогеноводорода, соответствующих солей и др.). Например, получение сложных полиэфиров:

    Реакционными (активными) центрами при поликонденсации можно считать функциональные группы.

    Процессы поликонденсации играют большую роль в природе и технике. Поликонденсация лежит в основе образования всех природных ВИС: белков, целлюлозы, крахмала, нуклеиновых кислот и др. Первое промышленное производство синтетического полимера - феноло-формальдегидной смолы (Л. Бакеланд, 1909), основано на реакциях полимеризации. Большой вклад в развитие знаний о процессах поликонденсации внесли отечественнве ученые: В.В. Коршак, Г.С. Петров, К.Д. Андрианов, американские ученые У. Карозерс, П. Флори, П. Морган. В настоящее время по методу поликонденсации получают более 30% от общего объема производства полимеров.

    Процесс анионной полимеризации протекает с участием веществ основного характера: щелочные металлы; производные щелочных металлов (алкоголяты, амиды, Ме-органические соединения); чаще всего натрийнафталиновый комплекс.

    Механизм роста цепи по Li-органическому соединению при формировании микроструктуры при анионной полимеризации диеновых углеводородов:

    Из схемы реакции видно, что осуществляется предварительная ориентация молекул мономера и внедрение ее по месту поляризованной связи.

    Обрыв цепи в реакциях анионной полимеризации может протекать по следующим механизмам дезактивации активных центров:

    1. перенос дегидрированного Н с конца растущей цепи

    ~CH 2 -C - H-R + Me + → ~CH=C - H-R + MeH

    1. захват протона растущей цепи и ограничение роста цепи наблюдается при полимеризации в жидком аммиаке или растворителе, способном расщеплять протон.
    2. прекращение растущего макроиона за счет его превращения в ион с пониженной реакционной способностью возможно вследствие изомеризации концевой группы

    ~CH 2 -C - CH 3 -COOCH 3 Na + → ~CH 2 -CCH 3 =C-O - OCH 3 Na +

    При анионной полимеризации процесс может идти избирательно и формироваться микроструктура. Например, изопрен при полимеризации на щелочном металле в растворителе пентане.

    Механизм полимеризации в присутствии амидов щелочных металлов.

    Инициирование

    KNH 2 → NH 3 K + + N - H 2

    N - H 2 + CH 2 =CH-R → NH 2 -CH 2 -C - H-RK +

    Рост цепи

    NH 2 -CH 2 C - HRK + → CH 2 CHR NH 2 -CH 2 CHR-CH 2 -C - HR

    Обрыв цепи

    ~CH 2 -C - HRK + + NH 3 → ~CH 2 -CH 2 R +N - H 2 K +

    Механизм для металлоорганических катализаторов.

    1. Инициирование

    MeR ’ + CH 2 =CH-R → R ’ -CH 2 -C - HRMe +

    Рост цепи

    R ’ -CH 2 -C - HRMe + → CH 2 =CHR R ’ CH 2 -CHR-CH 2 -C - HRMe +

    Обрыв цепи

    ~CH 2 -C - HRMe + → ~CH=CHR + MeH


    Лекция №6

    Анионно-координационная полимеризация: полимеризация диенов, полимеризация на комплексных катализаторах Циглера-Натта на П-аллильных комплексах; получение стереорегулярных полимеров.

    Ионно-координационная полимеризация отличается от ионной тем, что акту присоединения мономера предшествует его координация на активном центре или катализаторе. Координация мономера может иметь место как при анионной, так и при катионной полимеризации, но для анионной полимеризации она более характерна.



    Цифры в названных изомерных звеньях обозначают номер атома углерода,

    входящего в основную цепь молекулы изопрена. Впервые полимеризацию изопрена на металлическом Na в 1932 году осуществил Лебедев. Впоследствии изопрен полимеризуют на Li-органических соединениях в среде углеводорода. Координация мономера происходит на полярном, но недиссоциированном активном центре - C – Li - в результате чего мономерное звено принимает конфигурацию, соответствующую

    1,4 цис-структуре

    Добавление всего лишь нескольких процентов электронодонорных соединений (эфир, тетрагидрофуран, алкиламин) резко изменяет микроструктуру образующегося полиизопрена – преобладающей становится 1,4-транс (80-90%) и 3,4-структура (10-20%). Электоронодонорные соединение поляризует связь C -Li до разделения на ионы

    В этом случае микроструктуру цепи полимера определяет координация иона Li с концевым звеном макро-иона, которое имеет аллильную структуру. В аллильной структуре π-электроны делокализованы и поэтому два крайних атома углерода по электронной плотности эквивалентны. Для карбоаниона это выражается следующим образом:

    С учётом этого координацию иона Li с конечным звеном цепи изопрена, несущим заряд можно представить циклической структурой:

    Мономер может присоединяться как к 1-му, так и к 3-му атому С, что приводит к 1,4-транс или 3,4-структуре.

    В 1955 году немецкий химик Циглер предложил каталитическую систему, состоящую из 3-этилалюминия и хлорида титана ((С 2 Н 5) Аl+ТiСl 4) для синтеза полиэтилена в мягких условиях (50-80 С и р=1МПа). Итальянский химик Натта применил эту систему для синтеза полиэтилена и полистирола, и объяснил механизм действия этих катализаторов. В настоящее время группе катализаторов Циглера-Натта относят каталитические системы, образующиеся при взаимодействии органических соединений непереходных элементов (1-3 гр.) и солей переходных элементов (4-8 гр.).Известны гетерогенные и гомогенные катализаторы Циглера-Натта. На первых получают в основном изотактические полимеры, а на вторых изо- и синдиотактические. Детальный механизм полимеризации олефинов на катализаторах Циглера-Натта до сих пор обсуждается, однако установлено, что на первой стадии происходит алкилирование ТiСl 4 3-этилалюминием и далее присоединение мономера идёт по лабильной связи ТiС.

    Существует 2 точки зрения:

    Согласно первой на поверхности кристаллического ТiСl 4 образуется активный центр Тi 3+ , на котором мономер координируется, а затем внедряется по связи Тi-С.

    Координация способствует ослаблению связи Тi–С, а также обеспечивает присоединение мономера в определённом пространственном положении.

    Согласно второй точке зрения механизм взаимодействия предусматривает участие R Аl в активном центре, представляющий собой координационный комплекс, в котором атом Тi образует 3-х центровую 2-х электронную связь с аллильной группой, а атом Аl – 2-х центровую координационную связь с атомом Сl хлорида титана (мостиковые связи).

    В реакции инициирования мономер координируется на положительно поляризованном атоме Тi, образуя π-комплекс, который затем переходит в σ-комплекс, в результате этих превращений мономер внедряется по связи Ti-C и структура активного центра последовательно воспроизводится.

    Последующие акты роста протекают аналогично. Из схемы видно, что на активном конце цепи находится отрицательный заряд, поэтому полимеризацию на катализаторах

    Циглера-Натта относят к анионно-координационной.

    Обрыв цепи при полимеризации на этих катализаторах происходит в результате тех же реакций, что и при анионной полимеризации, в частности в результате переноса гидрид-иона на мономер или противоиона. В настоящее время методом анионно-координационной полимеризации получают стереорегулярные каучуки, полиолефины.


    Лекция №7

    Сополимеризация, ее значение как способа модификации полимеров. Типы сополимеризации: идеальная, блоксополимеризация, привитая. Состав сополимера. Закономерности процесса сополимеризации.

    Сополимеризация - совместная полимеризация двух или более мономеров. Она широко используется в практике, так как является простым и очень эффективным методом модификации свойств крупнотоннажных полимеров. Наиболее изучена двухкомпонентная или бинарная сополимеризация. При сополимеризации добиваются лучших свойств каждого из гомополимеров.

    Например, полиэтилен обладает высокой эластичностью, морозостойкостью, но плохими адгезионными свойствами. Введение в макромолекулу полиэтилена до 30% звеньев винилацетата придает полимеру свойство клея-расплава.

    Для повышения морозостойкости полипропилена в макромолекулу вводят звенья бутил - каучука (температура хрупкости падает до -40 0).

    Сополимеризация заключается в получении ВМС из смеси двух или более мономеров, которые называются сомономерами. Макромолекулы сополимеров состоят из звеньев всех мономеров, присутствующих в исходной реакционной смеси. Каждый сомономер придает полимеру свои свойства, при этом свойства полимера не являются суммой отдельных гомополимеров. Закономерности сополимеризации сложнее, чем гомополимеризации. Если при гомополимеризации имеется один тип растущего радикала и один мономер, то при бинарной сополимеризации существует 4 типа растущих радикалов. Например, если 2 мономера А и В взаимодействуют со свободными радикалами R · , возникающие при распаде инициатора, образуются первичные R · , один из которых имеет концевое звено А, а второй- В.

    R · +А R А ·

    R · +В R В ·

    R А · и R В · могут реагировать с А и В:

    А+ RА А · (К АА)

    В+ RА В · (К АВ)

    А+ RВ А · (К ВА)

    В+ RВ В · (К ВВ)

    Отношение константы скорости реакции каждого R · со “своим” мономером к константе скорости реакции с “чужим ” мономерам называют константами сополимеризации, или относительными активностями r мономеров.

    r A = К АА / К АВ

    r B = К ВВ / К ВА

    Величины r A и r B определяют состав макромолекул сополимера в большей мере, чем соотношение мономеров в исходной реакционной смеси. Если относительные активности сомономеров приблизительно равны 1, то каждый R · с равной вероятностью взаимодействует как со своим, так и с чужим мономером. Присоединение мономера в цепь случайное и образуется статистический сополимер. Это идеальная сополимеризация. Реакции сополимеризации могут протекать по радикальному и ионному механизмам. При ионной сополимеризации на константы оказывают влияние природа катализатора и растворителя, поэтому полимеры, получаемые из одних и тех же мономеров, но в присутствии разных катализаторов, имеют разный химический состав. Например, сополимер стирола и акрилонитрила, синтезированный из эквимолекулярной смеси мономеров в присутствии перекиси бензоила, содержит 58% звеньев стирола, а при анионной сополимеризации на катализаторе С 6 Н 5 МgВr- 1%, а при катионной полимеризации в присутствии SnCl 4 -99%.

    В практическом отношении интересны блок- и привитые сополимеры. В их макромолекулах существуют участки большой протяженности и звеньев каждого сополимера. Блок-сополимеры получают разными методами. Во-первых, при анионной полимеризации одного мономера возникшие «живые» цепи могут инициировать полимеризацию другого мономера:

    ААА - + n В = - ААА(В) n-1 В -

    Во-вторых, при интенсивном механическом воздействии на смесь разных полимеров происходит деструбция цепей и образующихся макрорадикалов. Макрорадикалы, взаимодействуя между собой, формируют блок-сополимеры. Блок-сополимеры могут образовываться также из олигомеров за счет взаимодействия концевых функциональных групп. Привитые сополимеры получают взаимодействием мономера с полимером и реже взаимодействием двух разных полимеров. Так как в этих процессах используется реакция передачи цепи с превращением полимерных молекул в макрорадикалы, в состав макромолекул вводят атомы или группы с повышенной подвижностью (Вr,что ускоряет реакцию передачи цепи). Если в реакционной среде находится полимер на основе мономера СН 2 =СН-X, СН 2 =СН-Y, то процесс образования привитого сополимера протекает сложным образом. Сначала возникает серединный макрорадикал:

    Затем этот макрорадикал инициирует полимеризацию мономера с образованием боковых ветвей:

    Получение блок- и привитых сополимеров всегда сопровождается образованием гопополимера из присутствующего в зоне реакции мономера.

    Состав сополимера.

    Состав сополимера не равен составу исходной мономерной смеси. Зависимость между ними может быть установлена кинетическими и статистическими методами.

    1. Кинетический метод. В большинстве случаев реакционная активность центров на концах цепей определяется лишь природой концевого звена, поэтому при выводе уравнения состава учитывают четыре реакции роста цепи между мономерами А и В и растущими активными цепями, а также константу сополимеризации. Дифференциальное уравнение состава сополимера выглядит так:

    d[A]/d[B]=[A](r A [A]+[B])/[B](r B +[A])

    Уравнение связывает текущие или мгновенные концентрации мономеров в сополимеры и в мономерные смеси через величины относительных активностей мономеров. Графической формой этого уравнения являются кривые состава сополимера, вид которых однозначно определяется r A и r B .

    1- состав сополимера равен составу мономерной смеси r A =r B =1 (вид идеальной сополимеризации), распределение звеньев статистическое.

    2- r A >1, r B <1

    3- r A <1, r B <1

    4- r A <1, r B >1. Сополимер обогащен более активным мономером во всей области состава.

    5- r A → 0, r B →0. В сополимере строгое чередование мономерных звеньев при любом составе мономерной смеси. Образуется сополимер состава 1:1.

    6- r A → 0, r B <1. Для сополимеров также характерно чередование мономерных звеньев, но оно не является регулярным.

    Лекция 5. Катионная и анионная полимеризация.
    Отличия от радикальной полимеризации:

    • растущая цепь является не свободным радикалом , а катионом или анионом;

    • катализатор не расходуется в процессе полимеризации и не входит в состав полимера.
    В зависимости от знака макроиона различают катионную и анионную полимеризацию. При катионной полимеризации:

    • на конце растущей цепи находится + заряд, который возникает в процессе инициирования и исчезает при обрыве или передаче цепи.
    При анионной полимеризации :

    • заряд растущего макроиона – (отрицательный).

    Так как вместо инициаторов при ионной полимеризации используются ионные инициаторы – катализаторы, ионную полимеризацию называют каталитической .


    Катионная полимеризация
    1877 г А.М.Бутлеров осуществил полимеризацию изобутилена в присутствии серной кислоты.

    Каталитическая полимеризация протекает в присутствии кислот (HCl, H 3 PO 4 , H 2 SO 4) и катализаторов Фриделя-Крафтса (AlCl 3 , BF 3 , TiCl 4 , SnCl 4 и др.). Эти вещества являются электроноакцепторными (электрофильными) и, присоединяя мономер , они образуют ион карбония.

    Схематически процесс можно изобразить следующим образом:

    Последующее взаимодействие иона карбония с молекулами мономера представляет собой реакцию роста цепи, причем растущая цепь сама является катионом с увеличивающейся в процессе реакции молекулярной массой. Реакция роста цепи сопровождается передачей по цепи + заряда.

    Обрыв цепи связан с тощеплением протона.

    Можно получать полимеры с высокой молекулярной массой.

    Большое значение имеют:


    • природа катализатора

    • нуклеофильность мономера.
    Пример: полимеризация изобутилена в присутствии BF 3 протекает при низких температурах практически мгновенно и со взрывом; в присутствии Al F 3 – в течение нескольких минут; в присутствии TiCl 3 – в течение нескольких часов.

    Особенности, отличающие катионную полимеризацию от радикальной:


    • Молекулярная масса полимера снижается при наличии в реакционной среде небольших добавок воды и других ионизирующихся веществ и часто не зависит от концентрации мономера.

    • Полимеризация значительно ускоряется при применении наряду с катализатором небольших добавок воды, кислот и других доноров протонов (сокатализаторов). Максимальная скорость достигается при определенном соотношении катализатор:сокатализатор. Эффект ускорения растет с увеличением кислотности сокатализатора. Добавка сокатализатора в количестве, не превышающем стехиометрического соотношения с катализатором, увеличивает скорость полимеризации и уменьшает молекулярную массу полимера. Увеличение содержания сокатализатора сверх стехиометрического не сказывается на скорости полимеризации, т. к. участвуют в реакции только те молекулы , которые связаны с катализатором.Роль сокатализатора зависит от характера среды. В полярном растворителе HCl ускоряет процесс полимеризации, т.к. образующийся комплекс с катализатором диссоциирует с выделением ионов Н + , возбуждающих полимеризацию. В неполярном растворителе, например, в четыреххлористом углероде (дипольный момент равен 0). Диссоциация комплекса мала и HCl только связывает катализатор, уменьшая скорость полимеризации.

    • На реакцию существенное влияние оказывает диэлектрическая постоянная среды.Скорость каталитической полимеризации зависит от полярности среды. С увеличением полярности увеличивается скорость полимеризации и увеличивается молекулярная масса полимера.
    Пример. Влияние диэлектрической проницаемости растворителя на скорость полимеризации метилстирола и молекулярную массу полистирола.

    • Энергия активации катионной полимеризации всегда меньше 63 кДж/моль. В случае радикальной полимеризации она превышает эту величину. Благодаря этому катионная полимеризация протеакет, как правило , с очень большой скоростью.
    При взаимодействии сокатализатора с молекулой катализатора образуется комплекс:

    который протонирует мономер с образованием активного центра – иона карбония:

    Рост цепи заключается в присоединении молекул мономера к иону крбония с последующей его регенерацией.

    Роль сокатализаторов могут играть некоторые растворители, а также трет-алкилхлорид.

    Пример: стирол не полимеризуется в водной среде в присутствии SnCl 4 . Добавка хлористого трет-бутила приводит к быстрой полимеризации:

    При взаимодействи хлористого трет-бутила с хлоридом олова образуется комплекс, который при взаимодействии с мономером дает ион карбония.

    Обрыв молекулярной цепи может произойти:


    • в результате передачи цепи на мономер:

    Кинетическая цепь продолжается.


    • при регенерации каталитического комплекса:

    Экспериментально показано, что скорость полимеризации (например, стирола в присутствии хлорида олова) прямо пропорциональна концентрации катализатора , а средняя степень полимеризации(п) не зависит от концентрации катализатора и прямо пропорциональна концентрации мономера.


    Средняя степень полимеризации:

    Т. е. средняя степень полимеризации не зависит от концентрации катализатора и прямо пропорциональна концентрации мономера.

    Суммарная скорость полимеризации может быть определена из уравнения:

    При условии, что[m] = const ,т.е. суммарная скорость катионной полимеризации прямо пропорциональна концентрации катализатора.

    Ионная полимеризация очень чувствительна к изменению условий реакции, характеру среды. Влиянию примесей. Поэтому часто реакция протекает сложнее. Чем показано в приведенных схемах.
    Анионная полимеризация.
    При анионной полимеризации возникновение активного центра связано с образованием карбаниона. Условно ее подразделяют на анионную и анионно-координационную. К последней относят полимеризацию в присутствии металлорганических соединений.
    Склонность к анионной полимеризации наиболее ярко выражена у мономеров с электроноакцепторными заместителями, которые вызывают поляризацию двойной связи, усиливая электрофильность ее и стабилизируя образующиеся анионы.
    Катализаторы – вещества, являющиеся донорами электронов (основания. Щелочные металлы , ихгидриды и амиды, металлорганические соединения)

    Более электрофильные мономеры требуют для инициирования менее основных катализаторов с более низкой электронодонорной способностью.


    Пример механизма анионной полимеризации:
    Полимеризация непредельных соединений в присутствии амида калия в среде жидкого аммиака.

    Установлено, что при полимеризации стирола в присутствии амида калия в жидком аммиаке каждая образующаяся макромолекула полимера содержит группу NH 2 . При этом молекулярная масса полимера не зависит от концентрации катализатора и прямо пропорциональна концентрации мономера. С повышением температуры молекулярная масса полимера уменьшается.

    Скорость полимеризации пропорциональна квадрату концентрации мономера и корню квадратному из концентрации катализатора.
    Обрыв цепи при анионной полимеризации происходит:


    • путем присоединения Н + или другой положительной частицы;

    • путем передачи цепи на растворитель.

    Катализатор не расходуется в результате реакции.
    С амидами полимеризуются: акрилонитрил, метилметакрилат, метакрилонитрил.

    Иначе идет полимеризация в присутствии металлорганических катализаторов R-Me (бутиллитий, этилнатрий, трифенилметилнатрий).

    Me в комплеке связан с мономером координационной связью – полимеризацию поэтому называют анионно-координационной. Особенность такой полимеризации – бифункциональное присоединение мономера (при катализе амидами металлов бифункциональный мономер присоединяется по одной функции).

    Чем более полярна связь металл-углерод в катализаторе , тем больше механизм полимеризации приближается к чисто ионному. Самая низкая полярность связи Li – C.

    а) полимеризация бутадиена в присутствии органических соединений натрия, калия (преобладают 1,2-структуры)

    б) в присутствии литий-органических соединений (растворитель-углеводород) на 90% преобладают структуры 1,4. получают стереорегулярный цис-1,4-полибутадиен

    В среде полярных растворителей влияние катализатора ослабляется, т.к. образуется комплекс растворитель-катализатор, а не катализатор-мономер. И если добавить, например, спирт,фенол, то в процессе полимеризации получим полибутадиен с преобладанием структуры 1,2.


    Обрыв цепи в отсутствие примесей, являющихся донорами протонов и способных к обрыву цепи , во многих сучаях может не быть!!!

    Реакция идет до исчерпывания мономера. В результате этого образуются макромолекулы, содержащие активные центры и способные инициировать полимеризацию. Их называют «живыми» полимерами. При добавлении к такому полимеру новой порции мономера его молекулярная масса возрастает. Если добавить другой мономер, то образуется блок-сополимер.

    При полимеризации с металлорганическими соединениями и щелочными металлами в отсутствие примесей, способных вызвать обрыв цепи., можно получить полимеры с очень большой молекулярной массой. В идеале молекулярная масса при этих условиях определяется соотношением мономер:катализатор
    Выводы:


    1. Т.к. при анионной полимеризации самопроизвольного обрыва цепи не происходит, то можно получить монодисперсные по молекулярной массе полимеры. Основные условия для этого:

    • полное отсутствие примесей:

    • хорошее перемешивание (скорость образования активных центров велика).

    2. В «живой» полимер для обрыва цепи можно вводить различные соединения и получать олигомеры с различными концевыми группами.

    Лекция 5. Катионная и анионная полимеризация.

    Отличия от радикальной полимеризации:

      растущая цепь является не свободным радикалом, а катионом или анионом; катализатор не расходуется в процессе полимеризации и не входит в состав полимера.

    В зависимости от знака макроиона различают катионную и анионную полимеризацию. При катионной полимеризации:

    · на конце растущей цепи находится + заряд, который возникает в процессе инициирования и исчезает при обрыве или передаче цепи.

    При анионной полимеризации :

    · заряд растущего макроиона – (отрицательный).

    Так как вместо инициаторов при ионной полимеризации используются ионные инициаторы – катализаторы, ионную полимеризацию называют каталитической .

    Катионная полимеризация

    1877 г осуществил полимеризацию изобутилена в присутствии серной кислоты.

    Каталитическая полимеризация протекает в присутствии кислот (HCl, H3PO4, H2SO4) и катализаторов Фриделя-Крафтса (AlCl3 , BF3, TiCl4, SnCl4 и др.). Эти вещества являются электроноакцепторными (электрофильными) и, присоединяя мономер, они образуют ион карбония.

    Схематически процесс можно изобразить следующим образом:

    Последующее взаимодействие иона карбония с молекулами мономера представляет собой реакцию роста цепи, причем растущая цепь сама является катионом с увеличивающейся в процессе реакции молекулярной массой. Реакция роста цепи сопровождается передачей по цепи + заряда.

    Обрыв цепи связан с тощеплением протона.

    Можно получать полимеры с высокой молекулярной массой.


    Большое значение имеют:

    · природа катализатора

    · нуклеофильность мономера.

    Пример: полимеризация изобутилена в присутствии BF3 протекает при низких температурах практически мгновенно и со взрывом; в присутствии Al F3 – в течение нескольких минут; в присутствии TiCl3 – в течение нескольких часов.

    Особенности, отличающие катионную полимеризацию от радикальной:

    · Молекулярная масса полимера снижается при наличии в реакционной среде небольших добавок воды и других ионизирующихся веществ и часто не зависит от концентрации мономера.

    · Полимеризация значительно ускоряется при применении наряду с катализатором небольших добавок воды, кислот и других доноров протонов (сокатализаторов). Максимальная скорость достигается при определенном соотношении катализатор:сокатализатор. Эффект ускорения растет с увеличением кислотности сокатализатора. Добавка сокатализатора в количестве, не превышающем стехиометрического соотношения с катализатором, увеличивает скорость полимеризации и уменьшает молекулярную массу полимера. Увеличение содержания сокатализатора сверх стехиометрического не сказывается на скорости полимеризации, т. к. участвуют в реакции только те молекулы, которые связаны с катализатором. Роль сокатализатора зависит от характера среды. В полярном растворителе HCl ускоряет процесс полимеризации, т. к. образующийся комплекс с катализатором диссоциирует с выделением ионов Н+, возбуждающих полимеризацию. В неполярном растворителе, например, в четыреххлористом углероде (дипольный момент равен 0). Диссоциация комплекса мала и HCl только связывает катализатор, уменьшая скорость полимеризации.

    · На реакцию существенное влияние оказывает диэлектрическая постоянная среды. Скорость каталитической полимеризации зависит от полярности среды. С увеличением полярности увеличивается скорость полимеризации и увеличивается молекулярная масса полимера.

    Пример. Влияние диэлектрической проницаемости растворителя на скорость полимеризации метилстирола и молекулярную массу полистирола.

    · Энергия активации катионной полимеризации всегда меньше 63 кДж/моль. В случае радикальной полимеризации она превышает эту величину. Благодаря этому катионная полимеризация протеакет, как правило, с очень большой скоростью.

    При взаимодействии сокатализатора с молекулой катализатора образуется комплекс:

    который протонирует мономер с образованием активного центра – иона карбония:

    Рост цепи заключается в присоединении молекул мономера к иону крбония с последующей его регенерацией.

    Роль сокатализаторов могут играть некоторые растворители, а также трет-алкилхлорид.

    Пример: стирол не полимеризуется в водной среде в присутствии SnCl4. Добавка хлористого трет-бутила приводит к быстрой полимеризации:

    При взаимодействи хлористого трет-бутила с хлоридом олова образуется комплекс, который при взаимодействии с мономером дает ион карбония.

    Обрыв молекулярной цепи может произойти:


    · в результате передачи цепи на мономер:

    Кинетическая цепь продолжается.

    · при регенерации каталитического комплекса:

    Экспериментально показано, что скорость полимеризации (например, стирола в присутствии хлорида олова) прямо пропорциональна концентрации катализатора, а средняя степень полимеризации(п) не зависит от концентрации катализатора и прямо пропорциональна концентрации мономера.

    Средняя степень полимеризации:

    Т. е. средняя степень полимеризации не зависит от концентрации катализатора и прямо пропорциональна концентрации мономера.

    Суммарная скорость полимеризации может быть определена из уравнения:

    При условии, что[m] = const ,т. е. суммарная скорость катионной полимеризации прямо пропорциональна концентрации катализатора.

    Ионная полимеризация очень чувствительна к изменению условий реакции, характеру среды. Влиянию примесей. Поэтому часто реакция протекает сложнее. Чем показано в приведенных схемах.

    Анионная полимеризация.

    При анионной полимеризации возникновение активного центра связано с образованием карбаниона. Условно ее подразделяют на анионную и анионно-координационную. К последней относят полимеризацию в присутствии металлорганических соединений.

    Склонность к анионной полимеризации наиболее ярко выражена у мономеров с электроноакцепторными заместителями, которые вызывают поляризацию двойной связи, усиливая электрофильность ее и стабилизируя образующиеся анионы.

    Катализаторы – вещества, являющиеся донорами электронов (основания. Щелочные металлы, ихгидриды и амиды, металлорганические соединения)

    Более электрофильные мономеры требуют для инициирования менее основных катализаторов с более низкой электронодонорной способностью.

    Пример механизма анионной полимеризации:

    Полимеризация непредельных соединений в присутствии амида калия в среде жидкого аммиака .

    Установлено, что при полимеризации стирола в присутствии амида калия в жидком аммиаке каждая образующаяся макромолекула полимера содержит группу NH2. При этом молекулярная масса полимера не зависит от концентрации катализатора и прямо пропорциональна концентрации мономера. С повышением температуры молекулярная масса полимера уменьшается.

    Скорость полимеризации пропорциональна квадрату концентрации мономера и корню квадратному из концентрации катализатора.

    Обрыв цепи при анионной полимеризации происходит:

    · путем присоединения Н+ или другой положительной частицы;

    · путем передачи цепи на растворитель.

    Катализатор не расходуется в результате реакции.

    С амидами полимеризуются: акрилонитрил, метилметакрилат, метакрилонитрил.

    Иначе идет полимеризация в присутствии металлорганических катализаторов R-Me (бутиллитий, этилнатрий, трифенилметилнатрий).

    Me в комплеке связан с мономером координационной связью – полимеризацию поэтому называют анионно-координационной. Особенность такой полимеризации – бифункциональное присоединение мономера (при катализе амидами металлов бифункциональный мономер присоединяется по одной функции).

    Чем более полярна связь металл-углерод в катализаторе, тем больше механизм полимеризации приближается к чисто ионному. Самая низкая полярность связи Li – C.

    а) полимеризация бутадиена в присутствии органических соединений натрия, калия (преобладают 1,2-структуры)

    б) в присутствии литий-органических соединений (растворитель-углеводород) на 90% преобладают структуры 1,4. получают стереорегулярный цис-1,4-полибутадиен

    В среде полярных растворителей влияние катализатора ослабляется, т. к. образуется комплекс растворитель-катализатор, а не катализатор-мономер. И если добавить, например, спирт, фенол, то в процессе полимеризации получим полибутадиен с преобладанием структуры 1,2.

    Обрыв цепи в отсутствие примесей, являющихся донорами протонов и способных к обрыву цепи, во многих сучаях может не быть!!!

    Реакция идет до исчерпывания мономера. В результате этого образуются макромолекулы, содержащие активные центры и способные инициировать полимеризацию. Их называют «живыми» полимерами. При добавлении к такому полимеру новой порции мономера его молекулярная масса возрастает. Если добавить другой мономер, то образуется блок-сополимер.

    При полимеризации с металлорганическими соединениями и щелочными металлами в отсутствие примесей, способных вызвать обрыв цепи., можно получить полимеры с очень большой молекулярной массой. В идеале молекулярная масса при этих условиях определяется соотношением мономер:катализатор

    Выводы:

    Т. к. при анионной полимеризации самопроизвольного обрыва цепи не происходит, то можно получить монодисперсные по молекулярной массе полимеры. Основные условия для этого:

      полное отсутствие примесей: хорошее перемешивание (скорость образования активных центров велика).

    2. В «живой» полимер для обрыва цепи можно вводить различные соединения и получать олигомеры с различными концевыми группами.

    Анионная полимеризация – это процесс образования макромолекул с участием отрицательно заряженного концевого атома растущей цепи.

    В промышленности синтетического каучука анионное инициирование применяют для полимеризации и сополимеризации диеновых мономеров и при получении силоксановых каучуков.

    Катализаторами анионной полимеризации диеновых мономеров являются щелочные металлы (Li, Na, K) и их алкилы. В этом качестве в основном используется втор -бутиллитий.

    Активной является неассоциированная форма инициатора, концентрация которой определяется равновесием:

    N C 4 H 9 Li + n-1

    С молекулой мономера взаимодействует неассоциированная форма инициатора.

    При взаимодействии щелочных металлов и ненасыщенных мономеров получают бифункциональные инициаторы анионной полимеризации.

    Вследствие передачи электрона от металла к мономеру (окислительно-восстановительная реакция) сначала образуются анион-радикалы:

    Радикальный и ионный центры в нем не локализованы, поэтому образуемый ион-радикал можно представить следующим образом:

    После присоединения следующей молекулы мономера активные центры разной природы локализуются и в результате реакции рекомбинации в системе остаются только анионные активные центры:

    Скорость анионной полимеризации зависит не только от концентрации инициатора и мономера, но и от природы растворителя и возрастает с увеличением его полярности.

    При анионной полимеризации бутадиена и изопрена в углеводородных растворителях суммарный процесс включает только стадии инициирования и роста цепи.

    Реакции обрыва и передачи цепи отсутствуют или идут с очень малыми скоростями. При этом образуются так называемые “живущие полимеры”, концевые группы которых сохраняют способность к присоединению мономера и после завершения полимеризации.

    Стадию роста цепи можно представить схемой, по которой каждый акт присоединения молекулы мономера происходит путем ее внедрения между ионом и противоионом или по связи углерод–металл в сильно-поляризованной молекуле. При этом каждому акту присоединения может предшествовать образование промежуточного комплекса (анионно-координационная полимеризация).

    На одном и том же активном центре в зависимости от природы металла, свойств среды и температуры может протекать анионная полимеризация с координацией мономера или без нее. В неполярных средах наибольшую координирующую способность имеют литийсодержащие инициаторы. Катион Li + имеет самые малые размеры ионного радиуса в ряду Li, Na, K, Rb, Cs и самую высокую электроотрицательность.

    При полимеризации диеновых мономеров в образовании кротильных соединений лития наблюдается делокализация заряда между a и g - углеродными атомами.

    В результате кротильные соединения лития имеют p-аллильную структуру в отличие от s-аллильных структур для других металлов.

    Литиевые p-комплексы имеют преимущественно цис-конфигурацию. На литийорганических активных центрах в неполярных средах формируются 1,4-цис -структуры как для полибутадиена, так и для полиизопрена.

    Катализаторами полимеризации органоциклосилоксанов являются сильные основания.

    Механизм анионной полимеризации октаметилциклотетрасилоксана можно представить следующей схемой.

    1) Инициирование:

    2) Рост цепи

    3) Реакция передачи цепи. Основная причина, вызывающая обрыв цепи обусловлена реакцией калий-силоксанолятных групп с водой:

    Поэтому в промышленностидля получения низкомолекулярных (жидких) силоксановых каучуков используют высококонцентрированные водные растворы щелочей, а для получения высокомолекулярных силоксановых каучуков в качестве инициатора используют продукт взаимодействия сухой щелочи с Д 4 (олигосилоксанолят калия).

    Полимеризация основаниями имеет ряд преимуществ перед полимеризацией кислыми катализаторами. Она позволяет за короткое время при концентрациях катализатора 10 -2 -10 -4 % (мас.) получать как высокомолекулярные силоксановые каучуки (с молекулярной массой до 10 6 без дозревания), так и жидкие каучуки. При этом возникает возможность регулирования молекулярной массы синтезируемого каучука. В отличие от использования кислотного катализатора при щелочном катализе нет необходимости нейтрализации концевых активных центров путем водной отмывки. При щелочном катализе нейтрализация активных центров осуществляется путем их стабилизации аэросилом или ортофосфорной кислотой.